

Picture the ulfimate
in precision soldering.

ream will melt and flow as cleanly and as
Pa

quickly as rosin-cored solder wire. Merely a faint residue of flux is left and any risk of
solder globules being formed is minimised or even eliminated altogether.
Where the Multicore Oxide-Free Solder Cream differs is in the physical creams contain atomised solder powder, with each particle covered with a layer of
oxide. This has to be removed by the flur oxide. This has to be removed by the flux
after heating but non-corrosive, rosin-based after heating but non-corrosive, rosin-based fluxes cannot do this effectively given
nature of the solder technique used.
The particles in Muticion The particles in Multicore Oxide-Free Solder Cream, as the electron-microscope
enlargement shown illustrates, are much enlargement shown illustrates, are much
cleaner and more uniform. The result: cleaner, quicker soldering. Available in a wide range of alloys and flux combinations, with particle size, flux
content and discosity equally variable, there can be a Multicore Oxide-Free Solder requirements. If, likeNikon, you need a solder medium that can be applied with high
degree of accuracy, either by syringe or silk screening, will give you a thoroughly health and safety regulations", you need to talk to Multicore about Oxide-Free Solder To find out more, use the reader reply
service, cut the coupon or contact us direct.

The biggest name in solder worldwide

. . . catch this bus with Farnell

and arrive economically at an efficient ATE workstation. Comprehensive testing under low cost desk computer control. Manual systems too.

FARNELL INSTRUMENTS LIMITED • WETHERBY • WEST YORKSHIRE LS22 4DH • ENGLAND • TEL: 093761961 - TELEX 557294 FARIST G

wireless world

ELECTRONICS/TELEEVISION /RADIO/AUDIO

NOVEMBER 1380 Vol 86 No 1538

Front cover shows a quartz
crystal made by Hewlett-Pack-
ard for a new oscillator. A ard for a new oscillator. A
plano-convex finish is used to plano-convex finish is us
achieve high stability.
in our next issue
Darkroom exposure and enlarger timer measures required exposure for a
black-and-white print, giv-black-and-white print, giv-
ing a digital readout in
seconds and tents It seconds and tenths. It th Christmas electronics quiz Christmas electronics quiz,
set by polvtechnic lecturer styan Hart and colleague. Prizes are offered.
Programmable power
supply provides 0 to 40 V at supply provides 0 to 40 V at 2 A , controllid via the IIEEE
General Purpose Interface Genera
Bus.
More details page 47

 nue, Suite 1217 , New York, NY 10022,
2ndiclass postage paid at New York ©) IPC Business Press Ltd, 1980
ISSN 0043 6062

Change of address
With the December issue, editorial and advertisemen offices will be at the
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
swer code BiSPRS G

$$
\text { R } 1380 \mathrm{Vol} 86
$$

37 Microchips and megadeaths
38 Simple pickup arm design

42 Farnborough 1980
45 Intermodulation at the amplifier-loudspeaker interface by Matti Otala and Jorma Lammasniemi

48 Designing inductors carrying d.c. by D. H. Thomas

ystem X now in service
55 Spark gaps
by J. Dearden
57 Letters to the Editor
P.r.b.s. generators Displacement current
Digital electronics and 'defence'

61 Satellite broadcasting in the eighties - 2

67 Coherent audio filters for c.w. reception
by F . Charman
72 An acoustically small loudspeaker - 2
by R. I. Harcourt
$79 \begin{gathered}\text { Audio gain controls } \\ \text { by Peter Baxandall }\end{gathered}$
Digital delay $\begin{gathered}84 \text { Circuit ideas } \\ \text { Power f.e.t. voltage regulator }\end{gathered}$
Reactance circuit
86 World of amateur radio

> 87 Colour tv receiver design - 4 by R. Wilkinson

89 New products

ww - oo8 For further details

WIRELESS WORLD NOVEMBER 1980
 TWO NEW THANDAR LCD MULTIMETERS

TM351 \& TM353 LCD 3½ DIGIT MULTIMETERS

 As with ald Thandar productst the TM351 and TM353 offer
Axceptional specifictiotion for money.

Both heresprpied complete with long life alkaine batereies,
and test lesds.

Bigger stock investment greater equipment range means wider choice

 50
100
10
\qquad

650
75
30
7500
90

Sign
Gen
BoO
1028

750
59
79
52
\square

=

ALL PRICES LISTED ARE EXCLUSIVE OF VAT (Standard Rate).

\star
\star
\star
PLUGGONIC DIS MODULES: CON LESS THANT THN 0.05% DC-20KHz AT 1 kW INTO 6 OHMS

* PLUG-IN MODULES: CONSTANT VOLTAGE / CURRENT, PRECISION OSCILLATORS $\begin{aligned} & \text { UNIPOLAR } \\ & \text { BIPOLAR DIGITAL INTERFACES FUNCTION GENERATORS AND MANY }\end{aligned}$
* OUTPUT MATCHING TRANSFORMERTION GENERATORS, AND MANY OTHERS
\star FULL OPEN AND SHORT CIRCUIT PROTECTION
\star TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
\star INTERLOCK CAPABIITY FOR UP TO EIGHT UNITS TO 4 kW .
* INTERLOCCK CAPABILITY FOR UP TO EIGHT UNITS

For full details on all Amcron Products write or phone Chris Flack
Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

[^0]

Precision control of speech amplitude, signal to noise ratio and waveform characteristics using a feedforward control process developed at University College, Swansea with NRDC backing (British Patent Application No. 12050/77\%. High speed digital processing techniques are employed using a Zilog Z80A microprocessor to sample and process the speech waveform.
The processor is a single self-contained unit which may be placed at any audio point within a voice communication system between the microphone at the sending end and the loudspeaker at the receiving end.

Mobile radio

H.F. point-to-point radio

Inter-comm systems

* CONSTANT OUTPUT AMPLITUDE Peak output is constant within $\pm 0.5 \mathrm{~dB}$ over an input variation of 24 dB
* SIGNAL TO NOISE RATIO IMPROVEMENT The maximum SNR improvement of 15 dB effectively removes ambience at the talking location. Speech degraded to zero dB SNR is improved to an SNR of 5 dB
* INHERENTLÝ LOUDER SPEECH Processed speech is approximately 8 dB louder than natural speech of the same peak amplitude. The SNR at the output of a noisy channel will be approx imately 8 dB higher in addition to the benefits resulting directly from the use of speech level control

Available in a 2 U high standard $19^{\prime \prime}$ rack, mounting for 240 V or $110 \mathrm{~V}, 50 \mathrm{~Hz}$ or 60 Hz operation.

Price: $£ 424$, case $£ 26$, excluding carriage and
V.A.T. Manual available separately.

Installation, maintenance and contract R \& D facilities available.
Export enquiries welcomed.

* HIGHER ACCOUSTIC OUTPUT Loudspeaker or earphone output is approximately 8 dB higher with no increase in peak output or distortion from peak limiting
* NORMAL SPEECH QUALITY Processed speech has the quality of normal telephony speech
* HIGHER INTELLIGIBILITY All speech sounds are raised to the same loudness level and thus processed speech retains high intelligibility when processed speech retains istening under conditions of ambient accoustic noise
* INSTANTANEOUS RESPONSE The response is synchronised to the zero crossings of the input waveform and no instrumental effects are noticeable

VOICE MICROSYSTEM LTD UNIT F, CARDIFF WORKSHOPS EAST MOORS
CARDIFF CF1.5EH UNITED KINGDOM.
Tel: CARDIFF (O222) 33409

Last year, nearly three out of every four home video
recorders bought or rented in Britain used the VHS format. You, as a VHS dealer, have been instrumental in helping VHS build its dominant market position. And now we would like to say thank you.
Thank you for recognizing the concrete qualities of leadership in the system: the superb picture and sound
 reproduction the reliability and the high level of compatibility

Thank you too for backing the judgement of such respected VHS manufacturers and video companies as Akai, Ferguson, Hitachi, JVC, Panasonic and Sharp.

And finally, thank you for continuing to stock VHS. Last year you were responsible for giving VHS 70\% of the market. This year you

Advertisement produced co-operatively by: Akai, Ferguson, Hitachi,JVC, Panasonic, Sharp.
TheWorld's No. 1

vHI

"I NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined about the cost of colour video.
Talk to Bell \& Howell or one of our Video Centres and get the current facts.
The fact,for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera. And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as $£ 1,300$ plus VAT. For playback, a standard TV receiver is

At these prices every user can benefit from colour Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm TTL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC $3 / 4$-inch U-format recorder.

The picture will be improved. You'll have another
sound track to use for foreign-language commentaries or question-and-answer training routines

- On $3 / 4$-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still

the cost of the system needn't exceed $£ 2,700$ plus VAT. Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE
You can, of course, spend more. At any Bell \& Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.
But do you need them?
Let the Video Centre, or Bell \& Howell, help you decid Whatever your decision, two things are certain. One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use) Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell \& Howell. Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop.

Convert to (or start with) colour. With JVC video equipment. And the Bell \& Howell Supershield guarantee.

Let Bell \& Howell show you the answer:

To Pieter Glas, Bell \& Howell A.V Ltd., Freepost, Wembley, Middlesex HAO 1BR.
Please send me more information about video equipment and a list of your Video Centres
Name
Organisation
Address

NC CAMERAS. JVC RECORDERS. JVC STUDIO EQUIPMENT. JVC MONTTORS. ELECTROHOME MONTTORS. FUII YDEO TAPES.
ww -026 FOR FURTHER DETAILS

You could do with a Helper on your test bench.

 get your hands on asigital success.

Keithley D.M.M. Test Equipment: Quality. With machines like the 169 shown above. 3122 digits; . 25% accuracy. A nononsense five function D.M.M. at a no-nonsense price.

Choice. The Keithley range spans Pocket $3112,41 / 2,51 / 2$ digit D.M.M.'s; many with I.E.E.E. options. So we can be sure of having exactly Built to a standard that very few people can equal.

Cost. And at a price even fewer can match. From $£ 79$ + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a specialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (0734) 861287

CAMBRIDGE LEARNING

SELF-INSTRUCTION COURSES
In's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as yougo. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

ww - 039 FOR FURTHER DETAILS

ww - OA6 FOR FURTHER DETALLS

Understand Digital Electronics
In the years ahead digital eiectronics will play an increasing part in
your life. Calculators and digital watches mushroomed in the 1970 's messages from hriends and electronic mail. After completing these books you will have broadened your career
prospects and increased your knowledge of the fast-changing world
around you around you.
DIGITAL COMPUTER
ELECTRONICS $£ 7.00$ ELECTRONICS £7.00 This course is designed as
introduction to digital electronics
is written at a pace that suits the is written at a pace that suits the
beginer
knowledge is assumed othernatic knowledge is assumed other than the
use of simple arithmetic and decimals
and and no electronic knowledge is
expected at all The course moves
paintakingly through all the basic
cons painstak
coincopts
simple and
that the poins on every page makestood sure
Everyone can learn from it. students, engineers, hobbyists.
housewives, scientists. Its four A4 volumes consist of:
Book 1 Binan, ocil

Book 4 Introduction to puise driven circuits; B .S and $~ J-\mathrm{k}$ fiio floss: binan cout
DESIGN OF DIGITAL SYSTEMS $£ 12.50$
proticourse takes Whe . Writen inder a to rimial
question and answer style to Digital
Comp
cours
and
course
and
depth.
dep

Microcomputers are coming - ride
the wave! Learn to program.

Flow Charts and Algorithms

and mastering them is the key to success here as well as being priceless tool in ain administrative areas -presenning satety regulations, THE ALGORITHM WRITER'S GUIDE $£ 4.00$ exploins how to define questions, put them in the best order and draw

GUARANTEE No risk to you

If you are not completelys satisfied. your money will be refunded upon
return of the books in good condition
CAMBRIDGE LEARNING LIMITED, UNIT 36
RIVERMILL LIITE, FREEPOST, ST. IVES, HUNTINGDON,
CAMBS., PE17 4BR, ENGLAND.
TELEPHONE: ST. IVES (0480) 67446
All prices include worldwide postage (airmail is extra - please ask for
prepayment invoice).
Please allow 28 days for delivery in U.K.

 computer languages in wivesto-1earn
use. Teach yourself
with a course which takes you from complete
ignorance step-by-step to real ignorance step-by-step to real
proficiency with a unique style of proficiency with a unique strye of
graded hints. In 6 straightroward
lessons you will learn the five lessons you will learn the five
essentias of programming: problem
definition, flowcharting, coding the
det cler definition, flowcharting, coding the
program, debuging clear
documentation. Harder problems are neverided sit glassy-eyed with your mind a blank. You to tackle never sit glassy-eyed with your mind a blank. You soon learn to tackle
really tough tasks such as programs for graphs, cost estimates,
, COMPUTER PROGRAMMING IN BASIC $£ 9.00$

 THE BASIC HANDBOOK $£ 11.50$
This best-seling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in
BASIC terminology. The dozens of BASIC dialects in use today mean programmers. often need to translate instructions so that they can e RUN on their system. The BASIC Handbook is clear, easy to
use and should save hours of your time and computer time. A must
for all users of BASIC throughout the world. for all users of BASIC throughout the world.
A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's No. 1 business language. After
25 hours with this course, one beginner took a consulting iob, documenting oil company programs and did invaluable work from the
first day. Need we say mores first day. Need we say more?

ORDER FORM
 Please send me the following books:-

Digital Computer Logic \& Electronics @ $£ 7.00$
Design of Digital Systems @ $£ 12.50$
Algorithm Writer's Guide @ $£ 4.00$
Computer Programming in $\begin{aligned} & \text { E4SIC } \\ & \text { BASIC Handbook } @ £ 11.50\end{aligned}$
BASIC Handbook @ $£ 11$.
ANS COBOL @ $£ 4.40$

nclose a *cheque/PO payable to Cambridge Learning Lto for $£$............
Please charge my:
aces/American Expres/B Mastercharge/Tiustcard
Credit Card No..

Teleaphon

Telephone orders from credit card holders accepted on 048067446 Overseas custor on a London bank, or quote credit card number.

Address

Cambridge Learning Limited, Unit 36, Rivermill Site,
FREEPOST, St. Ives, Huntitgodon, Cambs PE17 4BR, England.
(Registered in England, No. 1328762)

Hybrid Circuit Module Kits for CRT displays

VIDEOAMPLIFIER

Brimar kits save you -

* Design Time
* Component Purchasing Costs
* Component Stock Control
* Staff Training Time
* Production Costs
* Test Time
* Rejects

Write for information on the benefits Brimar hybrid circuit modules can bring you.

Thorn Brimar Limited
Mollison Avenue, Brimsdown,Enfield,
Middlesex EN3 7NS
Telephone: 01-804 120

SPECIAL PURCHASE

KA/SE
OF TOP QUALITY LCD MULTIMETERS

CHOOSE FROM FOUR MODELS

- $31 / 2$ digit autoranging (volts/OHms)
$\star 200$ hours battery life (2 pencells)
$\star 10$ amp AC/DC ($6220 \& 6110$) $\star \quad 1000 \mathrm{v} \mathrm{DC}$
600 v AC
$\star 200 \mathrm{~mA} \mathrm{AC} / \mathrm{DC}(6200$ \& 6100)
t Range hold facility $(6100 \& 6110)$
亡 Unit and range sign (6110 \& 6220)
\star Cnit and range sign (61 \& \& 622
\star Continuity buzzer (6100 \& 6110)

WW- 014 FOR FURTHER DETAILS

If everything were perfect...

... a control unit would consist of an on/off switch, a volume control and a programme selector switch.

Unfortunately this is not the case as any prospective high fidelity buyer, be he neophyte or hardened campaigner, quickly discovers.

He is faced with a choice.
He can attempt to sift the vast quantities of conflicting information gathered from high fidelity magazines, retailers and "my friend who is an electronics engineer and knows quite a bit about high fidelity,"

- or he can buy a Quad 44.

In the latter case he can be confident that whatever the programme sources, he will be able to
match them correctly and apply tonal correction when necessary to obtain optimum results.

Moreover he can be confident that he need not change his preamplifier to meet future developments.

To learn all about the Quad 44 he only has to write or telephone for a leaflet.
The Acoustical Manufacturing Co. Ltd., Huntingdon, PE18 7DB. Tel: (0480) 52561.

QUAD

for the closest approach to the original sound QUAD is a registered trade mark.

All Prices are exclusive of vat				
150	SISTORS	REGUATORS		${ }_{4024}^{4023}$
		7805 . 78		${ }^{4024} 4$
		${ }_{7815}^{781}$	cer	
		(1005	${ }^{74194} 74$	${ }_{\text {a }}^{4028 ~} 5980$
		7915	${ }_{74} 74$	${ }^{4030498}$
	${ }^{\text {Praxab }}$	${ }_{7924} 71.1$	7415	${ }_{\text {4032....... } 990} 690$
		LM320T5.	744	
		LM320012		4046_.109p
			${ }_{74}{ }^{4}$ L	4059...... $63{ }^{\text {a }}$
		LM34075		4052
	OC29......990	Lin307T.5.800	${ }^{7} 74$	${ }^{40566990}$
	2N966....150			
	2N1304	ITL		${ }_{4073}$
	${ }^{2}$	7400		
	${ }^{2}$	7403	74LS124. 1150	
ВСС183.....9p	(2N368..150	${ }_{7}^{7005}$	74LSE132 .790	
	2N2394A...	${ }^{7406}$	${ }^{744 \text { LS } 1151 . . .899}$	
909	2N2904A..150	${ }_{7}^{7408}$		
		7412		${ }_{4412}^{4404}$
	2N2966\%...100	${ }_{7414}^{7414}$		
	2n3268.100	${ }_{7416}$	744190. 1190	${ }_{450}^{4446}$
	${ }^{2} \mathbf{2} 34702 . .$.	${ }_{7420}^{7417}$	${ }_{744 L 5194} 7$	4511
	${ }_{2}^{2 \times 37304}$			
${ }^{\text {c/ }}$	${ }^{2 \times 37809}$	${ }_{7432}^{743}$	744196\%	
	${ }^{2}$	${ }_{7438}$	${ }_{74415257}$	4520
	2 23066.	${ }_{7442}^{744}$	$7^{744525200 .}$	
	${ }^{2 N 4055}$	7450	${ }^{7445357}$	${ }_{453}^{4526}$
	AddVAT	${ }_{7445}^{745}$	74.53788 .159	
			cmos	
dio	thiacs	${ }_{7475}$	4000.1140	
				DIL SOCKETS
		${ }_{7492} 74$	4008.	
	8A600V …720	7493....... 680		
	(104 A00V. 720	${ }^{7445}$		
		${ }_{744107} 7$	4014 ….....590	
	with interal	${ }^{4} 412$	4016	MEMORIES
		74145		
OPTO		${ }_{74157}^{74159}$	${ }_{4}^{4020}$	
Yelow 120		BRIDCE HEGTIFIERS		
	(104 ${ }^{\text {a }}$			Ephows
	15 Acoov V 138P			
741 747 16000				
	to press.			cPu's
RETAIL SHOP AND MAIL ORDER WE STOCK A WIDE RANGE OF \star Semiconductors \star Resistors-Capacitors \star Soldering Irons $\&$ tools \star VERO products \star OK Machine Tool Co.Products \star Microcomputers \& Peripherals including Products \star Microcomputers \& Peripherals including \star Large range of Microcomputer books $\begin{gathered}\text { 35p P \& P. VAT } \\ \text { additional }\end{gathered}$				
				${ }_{\text {a }}^{\text {Al advertised }}$ items avaiale
WR NER SYCAMORE ROAD AMERSHAM, BUCKS HPG 6SU TELEPHONE: 02403 22307. TELEX:837788 Write telephone or call. Access or Barchaycard accented				

The new name inLineari/Cs

Analog Systems, the fast growing linear I/C company rizona whose products are available from Pascall, offer a
range of high performance linear integrated circuits. Audio Amplifiers and pre-amplifiers

MA 700 Hi Voltage Op Amp $\pm 13 \mathrm{~V} / \mu \mathrm{S}$ slew rate for $0 / \mathrm{P}$ swings to $\pm 40 \mathrm{~V}$ 2 MHz GBW product, audio S/N ratio 140 dB MA 60391-80391 equivalent to LM 391N-60 / 80 MQ 328 Voltage Variable Gain Block. 100 dB dynamic rang 2 MHz B/W and $800 \mu \mathrm{~S}$ settling time

MA 332 Audio Operational
Amplifier 0.0002% Til
$4 n V / \checkmark H z$ input noise voltage $4 \mathrm{n} V / V \mathrm{~Hz}$ input noise voltage,
$\pm 20 \mathrm{~V} / \mathrm{S}$ sew rate and 20 V $\pm 20 \mathrm{~V} / \mathrm{S}$ S slew rate and 20 V

A PNPLOE SYSTEMS
 full product listings of
Analog Systems exciting
product range. Ine bes Telephone: ©93271 87418 Telex: 8814536 ww - 033 FOR FURTHER DETALLS

SONICOR

ULTRASONIC CLEANERS
:CLEAS ELECTRONIC COMPONENTS FAST. - RUGGED ETCK Hz Generators and lead - SOLVNTELEANSDGUEERSS AVAILABLE
ONIT ILUUSRATED IS 2 LTR. CAPACITY (APPROX. AND COSTS E87 FULLRANE OF SIZES AVAILABLE
INCLUDING INDUSTRIALUNITS.
detalls from:
Orme Scientific Limited

[^1]
TELEVISION SOUND IS GOOD!

Yes it's true - but you'll need to listen through a Minim
Television Sound Tuner to be convinced. Music, wildlife even the news suddenly comes to life when you can hear all the detail that you expect from High Fidelity equipment. Connect the Minim Television Sound Tuner to the amplifier
or music centre or listen directly on headphones so as not to disturb others
Further information will only cost you $12 p$ - stamp out poor televison sound!
Name
Address

Minim Audio Limited, Lent Rise Road, Burnham Slough SL1 7NY. Tel: Burnham 63724 MINIM AUDIO

MAIL ORDER PROTECTION SCHEME

(Limited Liability)

If you order from mail order advertisers in this magazine, except for classified advertisements, and pay by post in advance of delivery,

 Wireless World will consider you for compensation if the advertiser should become insolvent or bankrupt, provided1. You ha
pousition not earlier thisn 28 of Wireless World explaining the position not earlier than 28 days from the day you
order and not tater than 2 months from that day.
Please do not wait until the last moment to inform us. When you
write, we will tell you how to make yourcliam and what evidence of write, we will tellyou
payment is required.
We guarantee to meet claims from readers made in accordance
with the above procedure as soon as possible atter the advertiser with the above procedure as soon as possible after the advertiser
has been declared bankruptor insolvent tup to a limit of $£ 3,550$ per
annum for any one advertiser so affected and annum for any one advertiser so affected and up to $£ 10,000$ per
annum in respect of all insolvent advertisers. Claims may be paid for higher ameuntst, or when the advovisers. Crocedaims mas bey bot peeid
complied with, at the discretion of Wireless Worrdd but we do complied with, at the discretion of Wireless World; but we do not
guarantee to do so in view of the need to set some limit to this . guarantee to do so in view of the need to set some lin
This guarantee covers only advanced payments sent in direct
response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc., received as a result
of answering such advertisements). Personal advertisements are of answerin
excluded.
make a note of our name!
Compukit tuktol
with up to 32 k RAM expansion
ded Basic *Plugs straight into 8 k Compukit requires
no hardware mods. ($5 v .5 \mathrm{~s}$ required for 610) 610 Expansion (8k) ONLY £159 + VAT Disc Drive with DOS ONLY £285 + VAT

BOSe 2 MODEL 800MST 80 COLUMN HIGH PERFORMANCE IMPACT PRINTER
JUST LOOK AT THESE STANDARD FEATURES:
*RS-232, 20 mA , IEEE 488 and Centronics I/O
*15 Baud rates to 9.600 * 100 Chrs. per second Bidirectional *6 6 print densities 60,72, so, 96 ,
120 or 132 Chr line ASC IIStandard* Auxilliary User Defined C.

h (min. 10) + VAT STATIC RAM 21141 1.12 23

exatron Stringy Floppy

16 k loads in approx. 24 secs. - Wafers to
75 ft (48 k approx.).

Ohio Superboard II \& Challenger IP with free ram - the no fuss start to Micro's. $\begin{aligned} & \text { * Ready Built *8k Microsoft in ROM, } 6 \text { digit floating } \\ & \text { point basic plus full features. } 4 k \text { RAM }\end{aligned}$

SUPERBOARD II (24×24 format) $£ 159+$ VAT SUPERBOARD II (48×32 format) $£ 199+$ VAT POWER SUPPLY 5v.3A. . . . £27 + VAT
CASE £29 + VAT
CHALLENGER 1P $(24 \times 24$ format $) £ 219+$ VAT 1150 Hz CHALLENGER 1P (48×32 format) £ $259+$ VAT pperation (Superboard is used in Challenger)

METER PROBLEMS?

137 Standard Ranges in a variety of
sizes and stylings available for 10 -14 sizes and stylings available for 10-14
days delivery. Other Ranges and

Full information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 ww - 054 For further details

MiNE WAVE INVERTERS

-from caracal

200 to 1000 VA DC Input: 12, 24 or 48 V
AC Output: AC Output.
$220 / 240 \mathrm{~V}$ or
$110 / 120 \mathrm{~V}$ $110 / 120 \mathrm{~V}$
$50 / 60 \mathrm{~Hz}$

Caracal sine wave inverticrs ore designed to replace older tuned-type
inverters in fixed, mours marint . .e. They are also used for
 standiby $A C$ p
applications.
Our technical specification and competitive pricing offer without Our technical specification and co
doubt the best value or, the market.

- Very stable output voltage ($\pm 2 \%$)
efficiency throughout the ($\$ 0.3 \mathrm{~Hz}$
- load - resulting in lower battery load range, not just at full
- Very low distortion sine wave - only 3\% T. T.H.D.
- Very low distortion sine wave - on
- Automatic "standby" operation available.
- Comparatively low weight.

CAMANL

LEADERS N LOW.POWER
INERTER TECHNOLOGY

COMPUTERS AUDIO RADIO MUSIC LOGIC TEST GEAR CB GAMES KITS

COMPONENTS DEMONSTRATIONS SPECIAL OFFERS MAGAZINES BOOKS Royal Horticultural Halls Elverton Street
Westminster London SWl November 26-30 1980 It's all at Breadboard '80
This is the exhibition for the electronics enthusiast. From November 26-30 there is only one place in the universe for the electronics enthusiast to be - Breadboard '80, at the Royal Horticultural Hall in London. The majority of leading companies will be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard!
All aspects of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser - or just keep up to date with your hobby - don't miss Breadboard '80.

AVOID QUEUES - GET ADVANCE TICKETS AVOD QUEUES - GET ADVANCE TICKET
Send to: Advance Tickets, Modmags Ltd,
145 Chaing Cross Rd Lond
Please send:. I............tickets @ $\mathbf{£ 1 . 0 0}$ (Student/Child/OAP) то. |T0: .. I.
\qquad
\qquad
... I

FREDuency ChA and ChC
PERIIOD Ch A

ChA (may be gated \& 3.50 cariage, ins. ett.

SURES -
FRELuenc
PERIOD
Pren
time
count $1 \mathrm{~Hz}_{\mathrm{z}}$ o 99.9 кKнz

TYPE 615 OFF-AIR STANDARD £97. 13

$$
\text { Ham (03227) } 8835677
$$

Which are W and ex-Var, are correct at the time of going
to press and are subject to change without notic FROM OMB ELECTRONICS ww - 031 FOR FURTHER DETAILS

PB:HETIN PEWWE
MINATURE DRILLS AND ACGESSORIES for all your modelling needs

the indispensable

THRULINE WATTMETER
The Standard of the Industry
What more need we say..

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in "list' form - but simply because we do not try to squeeze this lot in every time
doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices
 LINEAOLISS: NUMERICLLSTTNGS

[^2]
200 Marth Fervice Rand, Brentwand, Essen
 $\underset{\substack{\text { (min } \\ \text { Callers } \\ \text { welcome } \\ \text { plese }}}{ }$

TELEPHONE (STD 0277) 230909 TELEX 995194 AMBIT G POSTCODE CM14 4SG

Catalogues
$28.3 . . .60$ ea

No other cleaner has all these advantages:-

1. Only 100% pure, nautural diamond grains sere utilised.

2. Al diemonnded blades are rectified to o ensur a an absolutiry smoath surface by viliminating
3. All diamond grains 200.300 or 400 .

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS)
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V OHL. Phone: 01-629 9556
81 Piccadilly, London W1V OHL. Phone: 01 -629 9556 WW - 067 FOR FURTHER DETAILS

MIND YOUR OW buSiliess WE DO! 'THAT'S WHY WE'RE GOOD AT IT' SUPRESSOR DESIGN THAT IS
So you do what you're good at And let us do what we're good at SUPPRESSOR DESIGN CIRCUIT PROTECTION
From our Standard range or design to your specification PHONE
RICK KEENS
RYE (079 73) 3725
ROXBURGH
SUPPRESSORS
LTD.
EAGLE ROAD, RYE E. SUSSEX

WIRELESS WORLD NOVEMBER 1980

wW - 037 FOR FURTHER DETAILS

WIRELESS WORLD NOVEMBER 1980

THE LEADING EXHIBITION OF COMPUTERS, PERIPHERALS AND SYSTEMS

will be in the Grand Hall OLYMPIA, LONDON November 4, 5 \& 6, 1980

CAN YOU AFFORD TO MISS
BRITAIN'S BIGGEST COMPUTER EXHIBITION?

TRADE ONLY - NO SCHOOL PARTIES - NO ADMITTANCE UNDER 16

 ENTRANCE $£ 2$Sponsored by "Computer Weekly," "Data Processing," ""Practical Computing" and "Systems International" and with the support of "Electronics Weekly" all members of IPC Business Press, the worlds largest publisher of specialist and business journals.

PW 'HELFORD'

A new series giving full instructions on how to construct this Amateur Bands Transceiver.
'SLIM JIM' FOR 28 MHz
By popular request, Fred Judd, designer of the 'Slim Jim', has produced a version for the 10-metre amateur band.

BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25 ft to 120 ft (7.5 M to

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter V, part 1

Functional design, rugged construc-
tion and total versatility make it first tion and total versatility make it first choice for telecommunications.

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, ac

A programme of continuous product development has led to a range of highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain
the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS'
CHOICE

STRUMECH

VERSATOV ER SYSTEM

PORTLAND HOUSE, COPPICE SIDE TEROWNHILLS, WEST MIDLANDS ww - 038 for further details

WIRELESS WORLD NOVEMBER 1980
PRINTED CIRCUITS
FOR WIRELESS WORLD PROJECTS

	¢58.00
F.m. tuner (advanced)-April 1976-1	${ }_{\text {E5,00 }}$
Cassette recorder-May 197	00
Audio compander-July 197	E4.25
Time code clock-August 197	
Date, alarm, b.s.t.t. witich-June $1977-2$ d.s.	
Audio preamplitier-November 197	
Morse keyboard and memory-Janu	
(logic board 10'4in. \times 5in). (keyboard and matrix 13in. $\times 1$	
distorion disc amplifier stereo)-September 1977-1	
Synthesized f .m. . trascieiver - Now	
Morsemaker--Jina 1978	
Metal detector-July $1978-1 \mathrm{~d}$	
Oscilloscope waveform store-October 1978	
Regulator for car alternator-August 1978-1	£2.00
Wideband noise reducer-November 19	65.00
Versatie noise generator-January 1979	${ }^{\text {E5.00 }}$
200M Hz frequency meter-January	
Distortion meter and oscillator-Julv 1997	
Moving coil preamplifier-August $1979-1$	${ }_{\text {c }}^{65.50}$
Multi-mode transciver-October 1979-10	
Amplification system-October 1979-3 preamp	
Digital capacitance meter-April 1980	16.00
ar graphics system-April 1980	
Audio spectrum analyser-May	
(ex	
Floating-bridge poiver amp - Oct. $1980-1$ s.s. (12 V or 40 V)	¢4.00
Boards are glassfibre, rollV.A.T and U.K. postage. Airmail add 20\%, Europe add 10\%, Insurance 10\%, M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2	

gA4 T2A1 FAST PCB 3.4.7TOTOM4 PROTOTYPES

"Here's why you should buy an I.C.E. instead of just any multimeter * Low servicing costs.

* 20K/volt sensitivity and high accuracy. * Large mirror scale meter.
* Fully protected against overload.
* Large range of inexpensive accessories. * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K. Distributors Prices from $£ 16.60-£ 32.00+$ VAT Prices from $£ 15.60-£ 32.00+$ VAT
Send for full colour leaflet and prices on whole range including accessories. ELECTRONIC BROKERS LTD. 61-.65 King's Cross Road, London WC1X 9LN
Tel: $01-278$ 3461. Telex: 298694

o: General Sales Dept.
Dorset House, Stamford Street, London SE1 9Lu
Please send me copy/ies of the Wireless World Guide to Broadcasting Stations (18th edition) @ $£ 3.25$ a copy inclusive, (U.K.), IPC Business Press Ltd.

Name-
(please print)
(pilase print)
Address

Registered in England No. 677128
Registered Office: Dorset House, Stamford Street, London SE1 9 LU

18th Edition
Around the world some thousands of radio stations are sending signals. If you're receiving, this standard guide will tell you the long, medium, short wave and vhf bands dealing with them by frequency, geographical location and alphabetical order. Sections are helpfully cross referenced. The Wireless World Guide to Broadcasting Stations is the eighteenth edition of a publication which has sold over 270,000 copies. In addition to the stations data, it includes much useful propagation, signal identifications and reception reports.
£3.25 inc. postage.

.25 inc. postage.

Gride to teasting Stations
18thEdition
Over 270000

-

SमUロF

Shure Electronics Limited, Eccleston Road,
Maidstone ME15 6AU, Telephone: (0622) 5988

wireless world

the M97 Era IV Series pickup cartridges

| | Stylus
 Configuration | Tip
 Tracking
 Model | Applications |
| :--- | :--- | :--- | :--- | :--- |
| Fore | | | |

and given "Best Buy" rating

Microchips and megadeaths

Then I was shocked by the feeling that the skin of my face had come off. Then, the hands and arms, too. Starting from the elbow to the
fingertips, all the skin of my right hand came fingertips, all the skin of my right hand came
off and hung down grotesquely. The skin of my off and hung down grotesquely. The skin
left hand, all five fingers, all came oft. ... Hundreds of people were squirming in the stream. I couldn't tell if they were men or
women. They all looked alike. Their faces wer wwollen and grey, their hair standing up. Holding their hands high, groaning, people
were rushing to the river were rushing to the river.... Under the bridg
were floating, like dead dogs or cats, many worpses, barely covered by tattered, clothes. In the shallow water near the bank, a woman wa lying face upward, her breasts were torn away
and blood spurting. . . By my side many junior high school students were squirming in agony They were crying insanely 'Mother! Mother!' that one could scarcely dare to look at them. I could do nothing for them but watch them die ne by one, seeking their mothers in vain."

Eyevitness account, Hiroshima, 6 August | Eyewitness account, Hiroshima, 6 August |
| :--- |
| 1945 .) |

Engineers played their part in the making of these events. Thirty-five years
later their role has become central, for the later their role has become central, for th echnology of delivering death has been
greatly improved. We no longer have to rely on manned aircraft to drop atomic bombs but send them as the warheads of self-guided missiles. This is where electronic engineering makes its particular contribution to slaughter, in the design of
the guidance system. Consider, for example, the Trident and the Tomahawk, the two nuclear missiles which the UK Government, without benefit of open Parliamentary debate, has swung on a reluctant nation. Both of these have digital microelectronics to update an inertial navigator. In the Trident, a
ubmarine-launched ballistic missile intended as Britain's independent nuclear weapon, the electronic system receives eference information from the optical pattern of the stars. The Tomahawk, part
of a NATO arsenal that will be owned and operated by US military forces, is a cruise missile; here the electronic system receives reference information on the geographic contours of the desired route from a magnetic-core memory and information on
the actual contours over which it is travelling from a radar altimeter. And such is. technical progress that as we get more and nore devices on a single silicon chip so we re able to kill more and more people with a single missile.
Throug work on such weapons lectronics engineers in the East and the West have put themselves in the service of politicians, generals and industrialists who have become monomaniacs; who seem to see no way out of the self-perpetuating
system of threat and counter-threat into which they have locked themselves and, like drug-addicts, desperately go on with it. The only thing likely to drag them out of their dementia is a threat from another direction - a concerted threat of rebellion
from the trapped populations. It becomes increasingly clear, as our distinguished American contemporary Science has said, "that deterrence cannot ultimately be table, and that the civilian populations of the world are no longer defended by the are merely hostages to them." None of us can be proud to serve a
technology which is being used in the technology which is being used in the name of "defence" as a means to attain know what this technology can do we should be among the leaders of dissent.

Simple pick-up arm design

Separating vertical and horizontal pivots allows use of longer arm
By David Read, B.Sc. Hons (Elec. Eng.)

Costing between $£ 5$ and $£ 10$ to make, this arm gives improved make, this arm gives improved

 tracking perfional arms. Increased effective arm length is achieved by positioning the horizontal pivot at the extremity of the arm. Separation of the pivots alsomakes for easier construction

Few people can afford either the money or the room for a hi-fi system which is tailormade by experts with nothing but the excellence of performance in mind. The lidetermine the type of equipment to be found in an installation. But even within these limits, it is no more than economic sense to arrange that the assembly contains units each with much the same standard of practice.
Home construction, properly carried out, obviously offers the best chance of achieving the highest standard of performance for a given outlay. Electronic equipcially using today's highly-developed solidstate technology. But the mechanical parts of a system are rarely given the do-it-yourself treatment. The average resources - in
engineering know-how and availability of engineering know-how and availability of
precision tools - are generally thought to precision tools - are generally thought to
be inadequate for this sort of work. I believe otherwise: given a suitable design,
any limitations in skill and machinery can be overcome without much difficulty.
One of the items of hi-fi equipment which particularly lends itself to amateur construction is the pick-up arm. Provided that the design is right, only a normal complement of tools handled with average care is needed to produce a mechanism
which will match the performance of a topquality, high-compliance cartridge costing up to ten times as much in outlay. The pick-up arm to be described is designed with the above thoughts in mind; it
would cost between $£ 5$ and $£ 10$ to make. It mainly differs from commercial arms of conventional design in that the vertical and horizontal pivots are not positioned at the same point along the arm. As the photo graphs show,
ment in the vertical plane is mounted forward of the one giving horizontal movement. In this way, the horizontal pivot can be placed at the maximum distance from the turntable centre for a given plinth size because it is not then necessary to
allow for traverse of the counterbalance weight behind what is normally the common pivot point. Thus there is room for a

Simple construction of pick-up arm separates vertical and horizontal radius. Vertical increased is situated halfway along arm.

longer arm, giving improved tracking, and longer arm, giving improved tracking, and being separate, they are of simpler form and therefore easier to make.
The description deals first with the fun damentals of pick-up arm operation, show ing what the requirements are and the
ways in which these requirements may be met. The degree of development which could be applied to the basic concept depends on the personal taste, enthusiasm, ingenuity and ability of the builder and, to some extent, on the depth of pocket. As an
example of what can be done a mk 2 model, built by the author and in regular use, is discussed to show some of the improvements affecting the appearance and ease of operation rather performanc which may be achieved.
ing a number of conflicting needs and avoiding a few pitfalls. There has been much discussion, in these pages and else where, on the subject of arm operation. It
would not serve any useful purpose to go would not serve any useful purpose to go
over the ground again in detail, although it is worthwhile listing the main requirements of a fixed-pivot arm of the type to be described, as opposed to the expensive, paraliel-tracking mechanisms which
light the servo-control enthusiasts: light the servo-control enthusiasts.
The fixed pivot arm has to be designed for compromise. Ideally, it should carry the cartridge in such a way that this behaves as though it were effectively floating in space. For this to happen, the arm
would need to be of zero mass and move without friction. There would also need to be a gradual change in the relative positions of arm and cartridge to match the geometry of the modulated groove bein tracked. It is because these are not practi-
cal possibilities that compromises must be made to compensate as far as possible fo the discrepancies between ideal and real operation
The main requirements are that

- in the horizontal plane, it occupies the correct position relative to the disc centre freely as possible at a constant distance above the disc surface
- it holds the cartridge so that the stylus is maintained in contact with the groov walls
walls
- it maintains the cartridge in its correct position relative to the groove with the minimum variation - random or periodic. The requirement of small random chang
 periodic change requires that the arn should not be prone to mechanical resoand of moderate amplitude outside the band.

Turning from the general to the particular the illustrations show that the arm is effectively constructed in three sections - the vertical pivot assembly, formed o
a U-frame and a shaft which support
a U-frame and a shaft which supports
the horizontal-pivot carrier bar, allow ing this to traverse in the horizontal plane

- the horizontal pivot assembly, incorporating the carrier bar and the horizon tal-pivot block
terbalance weight and cartridge-mount ing platform.
The principle component of the vertical pivot is a silver-steel shaft of about 3 mm diameter (not a critical dimension), tafitted, each tapered end rests in a dimple seating to form a low-friction pivot of the type often used to suspend the revolving rings of a gimbal assembly (hence such pivots are often loosely called gimbals.
The top of the shaft mates with a simple seating formed in a brass boss and screwed into a tapped bush in the centre of the upper angle plate of the U -frame. Th dimple seating holding the lower end of platform held in position on the U-frame base plate by screws passing through elongated holes. When the vertical pivo shaft is in position, the boss is screwed down into the bush until the shaft tips are ings. The shaft is thus held so that there is no sideways movement at either end, but it is free to rotate about its axis.
The function of the block platform is to enable the lower dimple seating to be moved, when the securing screws are re-
leased, a small distance either side of a point vertically below the upper seating. Movement is possible to the extent of the
elongated screw holes along a horizontal elongated screw holes along a horizontal
line parallel with the back plate of the U frame. By this means, the shaft may be
tilted through a small angle so as to prode anti-skating bias.
The diagram shows that the block has a V-groove cut into one edge immediatel
opposite a raised-head screw let into the U opposite a raised-head screw the base. The purpose of theove and frame base. Theburpose adiustment of the
screw is to enable easy ad amount of bias, in a way similar to that employed in car distributors for setting the
contact-breaker gap. The vertical offset is contact-breaker gap. The vertical offset is
achieved with the two back screws rocking the dimpled base plates on the hardwood motorboard.
The drawing shows a method of securing the horizontal carrier bar to the pivo end of the bar through which the vertical pivot shaft is passed provides an interfer ence fit. One or two tapped holes (metric size M2.5 or 6BA) lead horizontally from the rear end-face of the carrier bar into the shaft hole. Slotted grub screws are fitted tightened the bar is securely fixed to the shaft. In this way the vertical position of he carrier above the bottom plate of the U-frame (and hence above the turntable) he stylus cantilever and disc at the recom mended (standard) value of 15 degrees, the cartridge then being parallel to the dis
surface.
At the other end of the carrier bar, the by means of screws, not visible in the photograph, leading through the bar int apped holes in the block. The tubular ection arm passes through an elongated ole in this block, being held there by The block is shown in enlarged detail in he drawing. Two tapped holes lead into the pick-up arm aperture from opposite sides of the block to form a line along a
diameter of the arm when positioned cenrally in the aperture. Slot-headed screws,
second version of arm has vertical pivot situated at $3 / 3$ along arm with the aim of reducing longitudinal arm
vibration.

tapered ends to form pivo pois, threaded into these holes, one from each vertical side face of the pivot block. A brass collar, of about tmm thickness tube at the point where it passes through the pivot-block aperture, being fixed in position roughly two-thirds of the length of the arm from the end carrying the car-
tridge by a grub screw threaded through it and bearing onto the tube. This collar has two dimple seatings located centrally on the outside face at opposite ends of a diameter, and clear of the securing-screw hole.
When the arm, with its fitted collar hen the arm, with its fitted collar,
positioned correctly in the aperture the two pivot screws are tightened so that their tapered ends locate in the dimple seatings. This assembly thus forms a second gimbal mounting and allows the arm to move freely in the vertical plane.
luminium-alloy tube, not hy a maleable nium, with one end pinched into a flat spade shape for about 25 mm with two slotted holes cut into it for securing the
cartridge. The slots provide for limited adjustment of the angle between arm and cartridge. At the other end of the arm (in he prototype design), a lead slug is fitted into the tube and held there by a common paperclip. This slug forms the major part
of the weight required to counterbalance the combined mass of that part of the arm which is on the opposite side of the horizontal pivot and the cartridge itself. A brass collar passed over the pick-up tube at
this end as a sliding fit and held in position by a grub screw is set to give the recommended playing weight.
An alternative counterbalancing arrangement is illustrated in detail 3 which offers some advantages in ease of operation and adjustment, but at the expense of a
slight increase in difficulty of construction. In this modification, the counterbalance weight is a single rectangular block of brass measuring about 30 by 18 by 20 mm . As the drawing shows, a hole of 15 mm
diameter runs between two of the block diameter runs between two of the block
faces and connects at right angles to a second, smaller hole leading from the centre of the upper face. The lower part of the connecting hole is tapped to take a screw to secure the balance weight in posiion on the arm. The upper part is counfor screwdriver access.
On the end of the pick-up arm adjacent to the vertical pivot, one or two layers of a special self-adhesive flexible foam plastic
are wrapped round the tube, over a length of about 20 mm . Two thin shells of semicircular section - made of, say, $1 / 2 \mathrm{~mm}$ material - are fitted round this plastic sleeve to provide mechanical decoupling. The main hole drilled through the counslide over the shell/sleeve assembly so that, with the weight positioned on it, the plastics material is slightly compressed. The weight can then be moved along the sleeve to an appropriate position to give the
recommended playing pressure for the chosen cartridge. Having achieved this, the counterweight securing screw is.

WIRELESS WORLD NOVEMBER 1980
has its longer being taken that the weight vertical pivot axis exactly parallel to the either this or the carrier bar
The principal advantage of this alternaive counterbalancing arrangement is that the plastic sleeve mechanically separates the arm and the weight and so adds resistance to the mass and compliance of the arm/cartridge assembly and reduces the \mathbb{Q}
of the natural resonance of the combination. A reduction of about 5 dB in the amount of vibration at the resonance frequency is aimed at. Measurements are being taken for a mk 3 arm after experiments
with different materials, including Sorbowith different materials, including Sorbo(Dickinson Robinson group), and Eccorsorb (Emmerson \& Cumming). The emphasis is on plasticity, not elasticity, as elastic material could aid resonances. The arms are of very light construction, an advantage from the point of view of chances of damage in transit. But it does mean the arms are only suitable for high compliance pick-up cartridges, typically $20 \times 10^{-6} \mathrm{~cm} /$ dyne or better. . is suitably positioned in relation to the turntable (see items 1 and 2, below), has the cartridge properly fitted (item 3) and is correctly adjusted in respect of two other
settings affecting the arm itself (items 4 and 5). These five parameters of operation and the necessary adjustments for optiand the necessary adjustments for

1. The rake angle, otherwise called the vertical tracking angle, is the angle beand the surface of the disc being replayed, standardized at 15 degrees for most cartridges. It is the angle set between the cantilever arm and the top face of the carthe flattened end of the pick-up arm and if this flattened end has surfaces parallel to the axis of the arm, the vertical tracking angle will be correct when the arm is set parallel to the surface of the turntable. Thus, the only adjustment necessary in the
arm mounting is to arrange for the appropriate height of the carrier bar on the vertipriate height of
cal pivot shaft
2. Overhang is the amount by which the erective length of the pick-up arm -the ength from the vertical pivot to the stylus tip - exceeds the distance from the vertiOverhang is measured as the horizontal distance between the centre of the turntable and the stylus when the stylus, spindle and vertical pivot are all in the
same straight line With record and turntable placed at the front left corner of the plinth and the arm base at the far back right, you can then arrive at arm length and overhang using the table
3. Offset angle is the angle between the axis of the pick-up arm and the longitudinal axis of the cartridge which can be considered as a datum at 90° to the line of correct normal lateral displacement of the stylus. For a reproducing stylus to trace the longitudinal axis of the cartridge must be maintained at a tangent to the recorded groove. As the pick-up arm sweeps round a fixed pivot, i.e. does not act as a paralleltracking mechanism, this ideal condition effect of optimum setting of both offset angle and overhang, tangential tracking can be made to occur at two points along the curve swept by the stylus, i.e. at two
values of groove radius. The extent of the values of groove radius. The extent of the
tracking error can thus be reduced to an acceptable value on either side of these two points. The optimum value of offset angle (obtained by calculation but summarized in the Table) is set by means of a simple protractor which is usually drawn on a general form

\square See table

As the figures in the Table show, the mag nitude of the tracking error becomes less as the effective length of the pick-arm in-
creases. The vertical pivot in this design is creases. at a distance from the turntable which is the maximum for a given plinth size, so the effective length of the arm is size, so the effective length of the arr
virtually equal to its, overall length.
4. Playing weight is the force exerted by the stylus tip on the disc surface. In this arm, the amount of force is mainly
controlled by the weight of the counter conlance slug in the basic form or by the position of the rectangular block in the
modified arrangement. Fine adjustment to suit the cartridge installed is obtained by moving the sliding collar to an appropriate position which can easily be determined by measuring the weight at the stylus using
one of the small calibrated balance mechaone of the small caalilable for this purpose The same means of setting adjustment can be used for the modified counterbalance system.
5. Anti-skating bias. As the stylus traces the modulated groove it experiences a sid thrust - a component of frictional force by the stylus round the vertical pivot which causes it to bear more heavily on one side of the groove than on the other. This can result in a difference in performance between the two channels of a stere
recording; in particular, it can cause the onset of distortion at a lower modulation level in one channel than in the other. This unwanted side thrust can be counteracted by an opposing rotational bia acting at the vertical pivot of the arm. Such the pivot shaft at a small angle, so slight as to be unnoticeable. This is done by releas ing screws in the adjustment block and sliding the block an appropriate distance
(to the left as viewed in the illustration, i.e. (to the left as viewed in the illustration, i.e.
toward the turntable). A screwdriver blade, suitably angled between the slot in the side of the block and the nearby screw head makes precise adjustment easier.

Table taken from Pickup-arm design techniques, by T. S. Randhawa Wireless World, March 1978.

Pivot to stylus length (inches)	Optimum overhang (inches)	Optimum offset angle (degrees)	\% 2nd harmonic distortion due to tracking error	Zero trac in inches First	g error points n,record centre Second	Maximum tracking error (degrees)
7.5	0.76	27.62	0.91	2.34	4.61	2.93
8.0	0.69	25.56	0.85	2.31	4.60	2.77
8.5	0.65	24.00	0.79	2.33	4.58	2.58
9.0	0.62	22.70	0.74	2.32	4.62	2.33
9.5	0.58	21.33	0.70	2.30	4.60	2.23
10.0	0.55	20.19	0.66	2.34	4.56	2.15
10.5	0.52	19.24	0.61	2.33	4.59	2.00
11.0	0.50	18.38	0.58	2.33		
11.5 12.0	0.48 0.45	17.59 16.67	0.56 0.54	2.33 2.31	4.62 4.58	1.76 1.75
12.0 12.5	${ }_{0}^{0.43}$	${ }_{16.01}$	0.54 0.51	2.31	4.58	1.66
13.0	0.41	15.40	0.50	2.31	4.60	1.58

Column 4 is for a recorded velocity of $10 \mathrm{~cm} / \mathrm{s}$ r.m.s. The last column is for an arm having the optimum offset angle and optimum

FARNBOROUGH 1980

ectronic systems in light aircraft anc me of the smaller business types are stii ognizably concerned with communica and navigation, with perhaps Ter Thar and landing aid in the mor ulent. The electronics are aids: withou 2m, the aircraft will fly perfectly well
t may tend to fly into "stuffed clouds d to use more fuel than they should Airliners of the more statuesque variety d even some of the smaller ones rely to a greater extent on electronic assistance inagement, automatic landing and naviInagement, automatic landing and navi
tion. Aerodynamically exotic aero anes, like the Harrier and the Supe irage 4000 , for example, simply will no y in the air at low speeds withou t it another way, unstable. Most weapon-carrying military aero ines are weighed down with highly com cated locating, aiming, firing and avoid$\%$ electronics in an obviously vaii it he stands little chance of success in y bellicose adventure. Since, for each \mathfrak{x}, this is only intermittently true, the srcise is ultimately futile, and is of beneonly in the impetus to engineering de-
opment it provides. In the absence of il aviation, Farnborough would be pressing experience.
utomatic control
iiths Industries have been involved in ars. Recently, they received a $£ 6$ millio ter from Boeing for autothrottles for th 7 and 737, to be fitted on both new anc sting aircraft. The STS 10 ensures, by
eans of a digital performance-data com puter, that the engines are run at the most fie-efficient speeds to give the required heir thrust-management system for the ew Boeing 757 and 767 airliners, Marconi provide supervisory electronics for the being installed in Pan Am's 747s (savin 1.5%, or 7.5 million gallons of fuel a year nd a number of companies make completely automatic control systems for both lying controls and thrust management. rency in recent years, being taken to mean full-authority analogue or digital control of all functions in an aircraft. One loop maintains stability, another responding to p lot's demands for chateristics, and coni, for example, make a complete fly-bywire system for the Tornado and Jaguar, where all attitude and engine controls flaps and slats are under the supervision of computers
Marconi are also in the lead with tibre optic data highways for avionic computers
Multiple, redundant data channels ar used, which require the transfer of data between channels for voting to avoid dif ferences between channels and to deterare vulnerable to interference, and fibre optic links are used to give complete isolation and freedom from clectromagnetic ransients
This limited use of optical data high ways has been referred to as 'fly-by-light', really to be reserved the expression ough mission, as is now being developed by

Heading picture: AEW Nimrod, showing nose and tail
down radar.
Wing-tip pods contain equipment for

Marconi, and as is used by Bell in a Jet Ranger helicopter. In the Bell system, movement of the pilot's controls causes ansparent encoder disc to move between 18 Gray-coded bits of information as a position code. The data is latched into a parallel-to-serial data store, from which it read out serially into fibre-optic cables to receiver at the servo to be controlled roduce wide pulses for and narrow nes for a 0 , the result being converted back to analogue form for servo operation

Displays

oth civil airliner pilots and close-suppo fighter pilots experience moments of con entrated activity when their attention cannot, with safety, be divided between the strument panel and the view ahead. It therefore standard practice now to provide he quicker aircraft with either head-up (HDD). They ought, perhaps, to be called 'head-in-one-place displays' (HIOPD) since the intention of these devices is to provide the pilot with all the information he needs to fly the aeroplane, including the main instrument readings and the view
ahead, in one place -either at the screen or on the panel. The technique is not new

WIRELESS WORLD NOVEMBER 1980 much wider field of view affords a much wider field of view than was
previously possible. The principle of a previously possible. The principle of a
HUD is that a c.r.t. screen in the instrument panel which displays the more vital instrument readings is reflected from a half-silvered mirror in the pilot's forward view, so that he can see both the view
forward and the instrument readings without moving his head and without refocusing his eyes, since the reflected image is collimated. The angle over which the c.r.t. display is visible is fairly narrow. In the new HUD, convex glass compotive surfaces, made from special coatings which reflect light only at the wavelength of the c.r.t. phosphor. The shape of the reflective paths and the single-wavelength angle, bright display, since all light but that from the c.r.t. display is transmitted, this being reflected. For night use, the c.r.t. will display a television forward view, obtained by means of an infra-red
camera, and the instrument information. camera, and the instrument information.
The i.r. camera is part of the American LANTIRN programme, which is to provide Low-Altitude Navigation, Targeting Infrared for Night in the A 10 and F 16 . A similar night-vision display, also from Marconi, is intended for the Sea King heli-
copter. This uses an Intensified Isocon copter. This uses an Intensified Isocon
television camera mounted on a stabilized platform under the nose, which can also carry a number of thermal imaging modules developed by Marconi, Rank Taylor Hobson and EMI in the UK's Thermal
Imaging Common Modules programme. The extraordinary feature of the equipment is that the camera follows the directon in which the pilot is looking, its display being projected into the pilot's view by a HUD-type system in his helmet
visor. Effectively, therefore, he sees the view he would normally see, in whatever
direction he looks, but in the dark as well. Civil aircraft now use c.r.t. displays to an increasing extent in place of the familiar rows of 'clocks'. Colour tubes increase the amount of information possible in one display: the Penetron, a tube which emits a
colour depending on the depth of penetracolour depending on the depth of penetrais used by C.S.F. and Marconi, and several companies make special shadowmask ubes for this application. It is not possible obtain a blue colour in the Penetron, and C.S.F. are now developing high-resoand slotted masks. The difficulty here is

Marconi infrared camera for night vision, mounted under the nose of a Sea King helicopter. Camera aligns itself with pilot's
line of sight, and display is mounted on his helmet.

Radar displays show the effect of Plessey's AMTI clutter suppression. On the left is an unprocessed picture, with aircraft returns lost in clutter. The processed display
shows a complete absence of static seturns, only aircraft echoes remaining. The system is being evaluated at
Farnborough on a Plessey ACR 430 airfield Farnborough
control radar.

easy for for a conventional deflection yok C.S.F. say they can now do this

Rada

Secondary-surveillance radar (s.s.r.) was originally very much an afterthought, used during the war to distinguish friends (who had transponders on board) from foes
(who hadn't). It is now the chief tool used (who hadn't). It is now the chief tool used
in air traffic control and is still being de in air traffic control and is still being de-
veloped by, for example, Cossor. The UK's ADSEL (Address-selective) programme has been under way since 1971, in co-operation with the US DABS (Discrete
Approach Beacon System). Both work on a common principle of first 'acquiring' all s.s.r.-equipped aircraft and subsequently addressing the required aircraft directly at a lower interrogation rate. This does improve the interference problem, where air-
craft respond to the wrong interrogation or to the right interrogation but to the wrong ground station ('garbling' and 'fruit'), but it requires a much narrower beam, so that position information can be obtained from each reply. The narrow beam is achieved
by combining the signal from two halves of the aerial in and out of phase to give a sum and difference pattern. The difference has a sharp phase change null in the boresight direction which, when taken in conjunction with the peaky sum pattern, gives
effectively a very narrow beam, reducing uncertainty. It is possible to measure the position of an aircraft to within 5 minutes of arc in this way.

The problem of clutter continues to oc upy radar designers. There have bee many techniques put forward over the and to termanent, non-informative eturns, based on the fact that the not. One problem has been that, if an aircraft is flying tangentially to the rada pattern, there is no movement in the rang mension and the echo is suppressed Moving Target Indicator (AMTI) uses sto rage and data-processing methods in the video stages to avoid the problem. Th search pattern is divided into a grea number of small areas, bounded by pulselength and bearing, the average level of being digitized and stored. Any incomin signal which, on comparison, is found to exceed the stored level is assumed to be worthy of display and is passed, anything age level is continually up-dated to take account of variations in precipitation, etc. One of the more depressing sights a Farnborough was the appearance over the Black Sheds of the Airborne Early
Warning (AEW) Nimrod, a grotesque deWarning (AEW) Nimrod, a grotesque de
rivative of that most beautiful of all aero planes, the Comet. This aircraft, a modifi cation of the marine reconnaissance Nimrod, is intended for look-down surveillance of the approaches to the UK so slink in unnoticed. A Marconi-Elliott S band, pulse-Doppler, primary radar feed synchronized scanners in radomes fore an
aft, the returns being presented on six synthetic displays, which are controlled b
microprocessors to provide all the informa tion on a particular return. A secondar radar (i.f.f.) is also carried, the whole package being under the management of a data and compiles messages to base. The communications system to support all this is suitably complex, using high-speed digi-
tal data links at h.f. and u.h.f.

Navigation

Honeywell are to fit ring-laser strapdown gyros for inertial navigation to the AV-8B McDonnell's developed version of th Harrier. The systems are already specified for the Boeing $757 / 767$ airliners and have
also been selected for the Airbus A310. The absence of moving parts means a huge increase in reliability -Honeywell claim m.t.b.fs of over 60,000 hours. The principle is the Doppler effect, in
which a laser which a laser sends two beams round path in which they are reflected to in
tersect at a detector. When stationary both wavelengths are the same at the detector, but when the ring turns about an axis normal to the ring, the beam in one
direction will appear to increase in wave direction will appear to increase in wave-
length, the other apparently decreasing The difference is measured digitally and fed, in conjunction with the results of measurements in two other axes to the navigation computer, which continuously integrates the measurements to determine
position. position.

Intermodulation at the amplifier-loudspeaker interface

Part 1: Analysis of one source of audible difference between amplifiers

by Matti Otala* and Jorma Lammasniemi, Technical Research Centre of Finland

Intermodulation occurs between an
amplfied signal and a delayed version
returned from a loudspeaker through
a feedback loop, when open-loop
output impedance is high compared
to speakerimpedance. Part one of thi
article analyses this and a second part
describes a measurement method
with resultts of tests on different type
of amplifier circuit and suggestions
for avoiding the effect.
The sound quality at the low-frequency end of the audio reproduction chain has erms as firm, soft, dry and mellow. As fa loudspeakers are concerned, the chang sound impression may be explained as esult of different technical characteristic fiers present a more serious problem be cause the level of harmonic distortion a hese frequencies is usually low, the fre quency response is relatively flat, and output damping is almost always adequate ountered in practice is why the sound may perceivably change at the low end of he frequency spectrum when the sam istening environment and the same loudpeaker system is used and only the powe that certain power amplifier circuit topolo gies sound different to others, although n directly explainable difference is noted in the electrical performance of the circuits owing analysis shows that, under certain onditions, the loudspeaker reaction to the drive signal can propagate in the feedback oop of a power amplifier and intermodu en with the drive signal its The dynamic loudspeak.
complex load to the amplifier. As muc has been written about its behaviour (see for instance, references 1), it is sufficien he onost important factors affecting of interface between the loudspeaker and the mplifier.
The total compliance of the cone sus ension and the loudspeaker cabinet, and resonance, typically in the frequency range of 30 to 80 Hz for the woofer and at corre spondingly higher frequencies for the

* Submitted by Professor Otala whilst on leave of ab
squawker and tweeter. Other mechanica es are created by the differe oice coil, but no necessarily rigidy coupled to it. All these mechanical reso ances behave like parallel tuned circuit inductance. The crossover filters also

Fig. 1. Magnitude and phase of the termina impedance of an Acoustic Research AR3a
loudspeaker system, measured with the controls in midposition. Resonant mith the
mident frequencies are $32 \mathrm{~Hz}, 330 \mathrm{~Hz}$ and 2.5 kHz .
 Fig. 2. Magnitude and phase of the terminal
impedance of a Yamaha NS-1000 Monito loudspeaker system, measured with the frequencies are $38 \mathrm{~Hz}, 410 \mathrm{~Hz}$, and 5.5 kHz
hibit complex reactive behaviour, esp ially around the crossover frequencies igs $1 \& 2$ show the impedance of two popular loudspeaker systems manifesting Energy is stored in all these reactance Energy is stored in all these reactances ctance cannot dissipate energy and ctance cannot dissipate energy, and ow at these resonances, most of the stored energy returns to the amplifier and is diss pated in it. In addition, the loudspeake terminal impedance is non-linear, and cone break-up, delayed responses an ffects in the loudspeaker. Fig. 3 shows greatly simplified equivalent circuit of oudspeaker, taking into account only fe f the effects discussed
Now analyse a feedback amplifier ha ing two different loads, as shown in Fig. pure resistance R is used when mea Aring the characteristics of the amplifie. ioudspeaker, represented by the gross he true load. It is assumed to have a line resistance \mathbf{R} and negligible voice coil in uctance L_{v} to facilitate the analysis. Th保 if far from perfect, but this analys is to illustrate the basic mechanism of degree of accuracy. Similarly, the ampl fier is assumed to have an infinite inpu mpedance, and no frequency compens ion. All these approximations do no ffect the result of the analysis. Note that new parameter, the open-loop output im ircuit in contrast to prior analyses. The input signal V_{1} is taken to be a function $V(t)$, so that its Laplace transform

Fig. 3. Simplified loudspeaker equivalen nd suspension compliance respectively $\angle \mathrm{V}$ the voice coil inductance, R the voice coil resistance, including the radiation esistance, and ig the generator effec
urrent source

is $L\left[V_{1}\right]=v_{1} / s$. The analysis is based on linear theory.
For the resistive load R, the transforms of voltages V_{4} and V_{5} are

$$
\begin{aligned}
& V_{4}(s)=\frac{A(1+Z / R)}{s(1+Z / R+\beta A)} v_{1} \\
& V_{5}(s)=\frac{A}{s(1+Z / R+\beta A)} V_{1}
\end{aligned}
$$

The inverse transforms are both perfect itep functions and the only difference to itandard feedback equations is the term Z / R. An adequate damping factor neces-
iitates that the closed-loop output imitates that the closed-loop output im-
jedance of the amplifier be much smaller Jedance of the amplifier be much smal
han the loudspeaker impedance, i.e.

$$
R \gg Z /(1+\beta A)
$$

which yields a further simplification. Takng the inverse Laplace transform, the ng the inverse Laplace transform
oltages are found in time domain

$$
V_{4}(t)=\frac{A(1+Z / R)}{(1+\beta A)} v_{1} U(t)
$$

nd

$V_{5}(t)=\frac{A}{(1+\beta A)} v_{1} U(t)$.
If now the loudspeaker is substituted for the load, the situation changes markedly. эy equation 2 , equations 1 take the form

$$
\left.V_{4}(s)=\frac{A}{1+\beta A} \right\rvert\,-\beta Z I(s)+
$$

$$
\left.\frac{v_{1}}{s}\left(1+\frac{Z}{R}\right) \frac{s^{2} L C+s L /(R+Z)+1}{s^{2} L C+s L / R+1} \right\rvert\, 4
$$

$$
V_{5}(s)=\frac{A}{s(1+\beta A)} v_{1} .
$$

No change has occurred in the transormed output voltage V_{5} of the amplifier. ffectively controls the output voltage Iowever, the internal drive voltage of quation 4 now contains complex terms onsisting of the parameters in the loudpeaker equivalent circuit. To study the
behaviour of this voltage in time domain,
behaviour of this voltage in time domain 4 yields
$V_{4}(t)=\frac{A}{1+\beta A}\left[-\beta Z I(t)+v_{1}\left(1+\frac{Z}{R}\{1-\right.\right.$
$\left.\left.\frac{Z}{(R+Z)} \frac{1}{Q} \exp \left(-\frac{\omega_{1} t}{2 Q}\right) \sin \omega t\right\}\right] \quad 5$
where $\omega_{1}=\left(1 / L C-1 / 4 R^{2} C^{2}\right)^{1 / 2}$, the resonant frequency of the loudspeaker cone,
terminals short-circuited, and $Q=\omega, R C$ terminals short-circuited, and $Q=\omega_{1} R C$,
the approximate quality factor at resonance.

Fig. 5. Typical waveforms from equation 7 as functions of normalized time, with the loudspeaker-generated oscillation is very large, especially for low values of Q. is shown with a dashed line.

Fig. 6. Values of the first minimum and the of quality factor 0 .

The first term corresponds to the effect of
The first term corresponds to the effect of the loudspeaker by the vibration of the cone. Assuming that the feedback is large, $1+B A \gg 1$, say greater than 30 dB , the first term becomes

$$
V_{4}(t)=-Z I(t) .
$$

showing that the amplifier internal drive voltage necessary to serve as a sink for the
loudspeaker generator current is directly proportional to the open-loop output impedance Z. Dividing this equation by the nominal signal level of equation 3 the ratio of the loudspeaker-generated signal to the driver signal can be found

Similarly, the last term of equation 5 can be divided by the signal level, equation 3 lation in V_{4} to the signal in V_{4}

$$
\frac{V_{4}(t)_{\text {osciliation }}}{V_{4}(t)_{\text {signal }}}=
$$

$$
1-\frac{Z}{R+Z} \frac{1}{Q} \exp \left(-\frac{\omega_{1} t}{2 Q}\right) \sin \omega \mathrm{t}
$$

This represents a damped oscillation at the cone resonance frequency. There are neg
tive minima and positive maxima

$$
T=\frac{1}{\omega_{1}}(\arctan 2 Q+n \pi)
$$

where n is an integer, with values

$$
\begin{aligned}
V_{4}(T)= & 1-\frac{Z}{R+Z} \frac{2}{\left(1+4 Q^{2}\right)^{1 / 2}} \\
& \exp \left(-\frac{\arctan 2 Q+n \pi}{2 Q}\right) .
\end{aligned}
$$

Assuming $Z \gg R$, some typical waveforms of equation 7 are plotted in Fig. 5, and the of equation 7 are plotted in Fig. S, and the
values of the first minima and maxima are plotted in Fig. 6 as functions of Q. The amplitude of oscillation increases with decreasing Q. The reason for this apparently
strange behaviour is that, when the Q of the resonant circuit is lowered, the circuit absorbs more energy from a broadband signal spectrum.

Fig. 7. Measured responses $V_{4}(t)$ and 1000M loudspeaker systems. Only the two first resonances around 35 Hz and 400 Hz were taken into account in the calculated
values. The good match of the responss alues. The good match of the responses
show that the theoretical model used is satisfactory

To check the validity of the approxima而s made, the calculated measured oudspeaker systems of Figs $1 \& 2$. The calculated results are very close to the mea sured ones, which is surprising considring the complexity of the real three-way simple equivalent circuit of Fig. 3 is satis factory for this analysis.

To be continue
and

IN OUR NEXT ISSUE

Darkroom exposure meter and enlarger timer

A constructional project for photographers, this unit will measure the required exposure for a black-and-white print, giving a digita may also be used as a ten-minute process timer to count minutes and seconds. Cost: about $£ 30$.

Christmas quiz

Keep your brain alert and resist the torpor that comes from too much food and drink! Our electronics quiz, set by polytechnic lecturer Bryan Hart and colleague, will be a welcome break from compulsory enjoyment and will keep you mentally in trim to face 1981. Prizes too

References
erman, J. M. and Fincham, L. R., Applicaoudsperakers \mathcal{F} of thes to the measurement of loudsperakers. J. of the Audio Eng. Soc., vol.25,
1977, pp. $370-84$. 977, pp. 370-84.
Fryer, P., Loudspeaker distortions, can we hear
hem? Hi-Fi Newess July 1977, pp. 51-7.
Heyser, R, Loud Heyser, R., Loudspeaker reviews in various sules of Audio. For review of the Yamaha NS 000, see Audio, January 1979, pp.82-90.
ohnson, J. H., Power amplifiers and the loudpeaker load. Audio, August 1977, pp. $32-40$ ing, G., Interface 1, amplifier to loudspeake Hramanik, S. S. K., Specifying, the loudspeakermplifier interface. 53rd AES Convention, Z

Programmable power supply
A professional design which provides 0 to 40 V at 2 A , controlled via the IEEE General Purpose Interface Bus. The instrument operates as a listener/talker (using an I.s.i. chip) and can be modified to manual operation and an overload detection circuit which signals the controller.

Designing inductors carrying d.c.

Simple procedure for comparing cores and choosing the optimum

The initial selection of a suitable size of iron orferrite core for an inductor or transformer with windings carrying
direct current is difficult. The author describes a simple procedure which not only enables different cores to be compared for a given application bu also enables a basic design to be completed using the optimum core.

The design of transformers and inductor which carry a current with only an a.c component is relatively straightforward
and is based on the well known equation:$E=4.44 B N a f$ However, transformers and inductor whose windings carry a current with direct component require a different design procedure. This is because the d.c. component can cause the core to saturate,
giving a very low incremental inductance. giving a very low incremental inductance
A possible solution is to introduce a gap o non-magnetic material into the core. This gap reduces the effective permeability of the core. Thus with an optimum gap the core can be run somewhere below satura-
tion flux density. Calculating the optimum tion flux density. Calculating the optimum
gap can be a tedious process and also introduces another variable into the choice of the optimum core. The optimum gap chiefly depends on the required inductance, the d.c. and a.c. components of
current, the maximum flux density allowable in the core and the core area. A long while ago C.R. Hanna ${ }^{1}$ devised an elegant system to enable the optimum gap to be easily found. Graphs are avail-
able for a number of ferrite and iron cores able for a number of ferrite and iron cores
based on Hanna's technique. A representative graph for a medium size ferrite core is given in Fig. 1. The vertical axis is graduated in units of $L I^{2}$ and the horizon. tal axis in units of NI. Both L and I (the
total of the d.c. and the peak a.c. compototal of the d.c. and the peak a.c. compo-
nents of current) are known and thus a point on the curve can be found. The curve is graduated directly in gap thickness, giving the optimum gap directly and, referring to the horizontal scale, we
find a corresponding value of $N I$ and hence the number of turns N. This is an excellent basis for a design as, once the number of turns is known, the necessary gauge of be determined. Hanna curves, however be determined. Hanna curves,
are only available for some cores. A more general approach is re required to enable the most suitable core

Fig. 1.Representative graphfor amedium sizedferrite core as used in Hanna's technique for finding the optimum gap
to be rapidly selected. Frequently the fina design will be done by transforme ment design engineers find it rapidly compare a range of cores to see if the design is feasible within the available space. A simple design procedure is derive
below and outlined below and outlined at the end of the
Ind

Inductance can be defined as flux linkages per amp.
$L=N \frac{\mathrm{~d} \Phi}{\mathrm{~d} I}$
(2)

If no saturation occurs Φ is proportiona to I and if remanent flux is small,
$L=N \frac{\Phi}{I}$
(3)
hence
$N=\frac{L I}{\Phi}$
$=\frac{L I}{B a}$
(4)
where a is the cross-sectional area of the core. (All dimensions are in metres.).
Equation 4 could have been writtein

$$
\begin{equation*}
N=\frac{L I}{B a} \tag{5}
\end{equation*}
$$

where \hat{I} is the sum of the d.c. and peak a.c. components and \hat{B} is the flux density corresponding to the peak current. Now \hat{B} is available from the
manufacturer's data for the core material, a is available from the core data (or can be easily measured) and L and \hat{I} are the required parameters. Hence the number of cores a parameter, inductance for 1 turn $\left(A_{L}\right)$ is defined. Now, for the inducto being considered,
$A_{L}=\frac{L}{N^{2}}$
If this value is greater than the value of A_{L} given in the core data, we need more turn A_{L}
$N=\frac{1}{A_{L}} \sqrt{L}$
(7)

In this case no core saturation will occur. A more likely case is that the valu of A_{L} calculated in equation 6 will be less than the value given in the core data in
which case a gap will be required in the which case a gap will be required in the
core. In this case the number of turns will be that calculated in equation 5. This equation is very useful as it allows different cores to be directly compared in
terms of N. terms of N.
If the valu
6 is significanty A_{L} calculated in equation 6 is significanty lower than the value given able m.m.f. will be dropped across the two air gaps, each of thickness g. The approximate gap can be calculated as
follows: $B=\mu_{0} H$
$=\mu_{0} \frac{I N}{2 g}$
$g=\mu_{0} \frac{\hat{I} N}{2 \hat{B}} \approx \frac{10-\hat{f} N}{\hat{B}}$
Generally manufacturers provide two types of ferrite core, namely transformer and inductor cores. Transformer cores are ground to fit each other as perfectly as
possible, giving high values of A_{L}, but the possible, giving high values of A_{L}, but the actual value of A_{L} varies from batch to
batch as the permeability of the core batch as the permeability or the core
material varies. Inductor cores are ground
so that the middle limb is shorter than the
outside limbs, giving an integral air gap. outside limbs, giving an integral air gap.
This gap is ground so that the inductance factor, A_{L}, is constant for a given type of core even if the properties of the core material vary. Thus for certain cores it may be possible to choose a member of the this case no additional gap is required and if necessary N can be changed slightly to suit the actual value of A_{L} quoted in the data sheet. If this is not practical, a transformer core may be gapped with a
suitable thickness of cardboard or mica of thickness g. (It should be noted that the same thickness of spacer should be fitted to the centre and outer limbs of the core to ensure equal spacing and to prevent the cores will depend on the maximum ambient temperature. Some ferrite core materials, unlike steel, have saturation flux densities which depend on core temperature to a considerable degree. For the core material
whose characteristics are given in Fig. 2 a suitable peak flux density at $100^{\circ} \mathrm{C}$ would be 150 mT . However if the maximum core temperature was $70^{\circ} \mathrm{C}$ a suitable peak flux density would be 220 mT . In any case the core material whether ferrite or steel.

Fig. 2. Curves offlux density against field material, attemperatures of $20^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$

The resistance of the winding is probably the most important parameter nd, knowing N, can be calculated fro the following equation:
$R=\frac{\text { diameter of winding }}{\text { area of winding }} x$

$$
\begin{align*}
& \text { of winding } \tag{9}\\
& N^{2} \times 10^{-7} \Omega
\end{align*}
$$

This extremely useful equation is based on the resistance of copper and typical per centage filling of the winding area with opper, allowing space for the former and transformer the resistance will be double.
Substituting the value of N given by quation in aquather extremely useful result.

Basic Design Procedure

1. Calculate the required inductance, value of the peak magnetising current, the .
2. Select a core and list the following parameters

Core flux area
Core winding diameter
Peak flux density at the maximum core temperature \hat{B} (assume cor Calculateratere rises $10^{\circ} \mathrm{C}$ above ambient temp.

$$
\begin{aligned}
& \text { er of turns } N \text { from equation 5: } \\
& L \hat{J}
\end{aligned}
$$

$$
N=\frac{L \hat{I}}{B a}
$$

4. Calculate the inductance factor from equation 6 :

$$
A_{L}=\frac{L}{N^{2}}
$$

and see if a gap is required. If a gap is not required re-calculate N from equation 7 :

$$
N=\frac{1}{A_{L}} \sqrt{ } L
$$

5. Calculate the winding resistance from equation 9 :

$$
R=\frac{D}{A} \times N^{2} \times 10^{-7} \Omega
$$

for an inductor and twice that value for a transformer
6. See if the resistance estimated in step 5 is similar to the requirement given in step 1. If similar proceed to step 7 ; if not repeat the above procedure using a larger or smaller size of core.
7. From the value of N calculated in steps 3 and 4 and using wire tables, choose an optimum gauge of wire which comfortably fits in the bobbin, allowing sufficient space or other windings and insula
given in equation 8: given in equation 8:

$$
g=\frac{\hat{S}^{\prime} N}{2 \tilde{B}} \times 10^{-6}
$$

or use an inherently gapped inductor core
$R=\frac{\text { diameter of winding }}{\text { area of winding }} \times$
$\frac{L^{2} \hat{I}^{2}}{{\overline{B^{2}} \text { core area }}^{2}} \times 10^{-7}$
(10)

Again the resistance of a transformer would be twice as great. Provided that which makes a gap necessary), equation 10 allows an immediate estimation of winding resistance for a given core and has been found to work well for ferrite and iron cored inductors.

Inductor flux falls to zero during each cycle
Single-ended forward converters work in his manner and are a special case of the cases described above. Forward converters require the magnetising current to be as mall as possible to reduce the energy that is fed back to the supply during each cycle. no gaps are introduced into the core in the general case.
If $V=$ voltage across primary of transformer, $t=$ on time of transistorswitch,
$V=N \frac{d \Phi}{d t}$
and as the flux starts from zero
$V=\frac{N \Phi}{t}$
hence
$N=\frac{V t}{B a}$
and winding resistance is
$R=2 \times \frac{\text { diameter of winding }}{\text { area of }} \times$ area of winding $N^{2} \times 10^{-7} \Omega$
or
$R=2 \times$ diameter of winding
(
$\mathrm{R}=2 \times \frac{\text { area of winding }}{}$
$\frac{V^{2} t^{2}}{\hat{B}^{2} a^{2}}$
where a is the area of the core.
In equations 12 and 13 , the factor of 2 or a transformer is included as forwar or a rrans always use a transformer.

WIRELESS WORLD NOVEMBER 1980

The magnetising current should b b
calculated from either the core per meability or from the value of A_{L} given fo the core.
$L=N^{2} A_{L}$
$=\frac{V^{2} t^{2} A_{L}}{B^{2} \times a^{2}}$
and the peak magnetising current is
$\hat{I}=\frac{\hat{B}^{2} a^{2}}{V t A_{L}}$
Useful formulae for transformers not carrying d.c. and smoothing
given by T. Roddam in ref. 2 .

Fig. 3. Testrig to determine the peak flux that a highfrequency core can accept.
a condition found where no saturation occurs. The core can then be placed in an temperature and the corresponding value of peak current for no core saturation found. The inductance of the winding can then be calculated from the supply voltage and rate of rise of current. Thus the
number of turns N, peak current \hat{I} and number of turns N, peak current \hat{I} and can be substituted into equation 5 to determine the peak flux density \hat{B}.
This technique gives a rapid procedure for an initial design. Such an initial design
could be tried before the design is could be tried before the design is
optimised by a specialist designer who will modify the design somewhat to allow for ease of winding, insulation, leakage inductance and core loss.

It should be noted that if it is known
from the start that a gap will be required, a direct comparison of cores may be mad

$$
R=\frac{D}{A} \times \frac{L^{i} \hat{Y^{2}}}{\hat{B}^{2} a^{2}} \times 10^{-7} \Omega
$$

I would like to thank the Directors of Cossor Electronics Ltd for permission to
publish this article and Mullard Ltd for permission to reproduce Figs. 1 and 2.

References

1. Design of reactances and transformers which
carry direct current C . Trans, Vol. 46, pages 155-158, February 1927 . Also: The design of iron cored chokes, M. G. Scroggie, Wireless
561,1 June 1932 . 2. Some thoughts on transformers, T. Roddam,
Wireless World, December 1973.

Literature received

Tape Recorder Spares Ltd have sent us a cops details and prices of a vast range of audio leads.
der plugs, adaptors and spares. It can be had from TRS at 206-210 Ilderton Road, London
SE15 INS on payment of $£ 1.25$. Applications for the NOVO range of logic
circuits which are all provided with a non-volatile memory on the chip are set out by plessey y
in a new booklet. Data sheeest are provided. Ob
tainable from the Publicity Office, Plesse Semiconductors, Kembrey Street, Crosdy's
Hill Estate, Swindon, SN2 613A. WW401 Soldering equipment and small tools, including the Oryx soldering-iron range, the Iso-Tip
tuick-change iron and several integrated-circuit quick-change iron and several integrated-circuit
handling tools, are described in an information pack from Greenwood Electronics, $\begin{aligned} & \text { Porman } \\ & \text { Road, Reading, Berks, RG3 INE. }\end{aligned} \begin{aligned} & \text { W } 402\end{aligned}$ Students, teachers and lecturers meeting new topiss in physiss for the first time may like to
know that Unilab produce a series of booklets in know that Unilab produce a series of booklets in in
their "Notes for Use" series. They have sent us three, entitled Student oscillo. scope, Microwaves and Analogue computing-
an introduction. They are published at $£ 1.50$
each for the first two, $£ 2.00$ for the one on
computing, and are obtainable from Unilab computing, and are obtainable from Unilab Equipment enclsoures from Sorel are the
subject of a large catalogue, recently received subject of a large catalogue, recently received.
In addition to enclosures of many sizes and types, there is also information on metal-
working tools, small cabinet-fittings, and wiring working too cs, small cabinet-fittings, and wiring
aids. The catalogue can be obtained from Sorel Electric Ltd, Cosgrove Way, Luton, Beds
We have received from Quarndon a full catalogue and price list of an enormous range of
semi-conductor discrete and integrated devices and microcomputers, copies of which can be obtained, free of charge, from Quarndon
Electronics Ltd, Slack Lane, Derby. WW 404 A leaflet on waveform processing, using a tranA teanle recorder, tape storage and computer
sient controller is available from Data Laboratories Ltd, 28 Water Way, Mitcham, Surrey,
CR4 4 HR. Home Radio Home Radio's new catalogue is published, con-
taining a vast array of all the components the taining a vast array of all the components the
average home constructor needs, complete with
price list. Semiconductors are in a supplement,
which we didn't receive. Catalogue costs $£ 1.30$
from Home Radio (Components) Ltd., 269 A from Home Radio (Components),
Haydons Road, London SW19.
Hewlett-Packard have a leaflet, AN 191-6, on the measurement of length, dielectric constant
and delay matching of transmission lines, using a time-interval counter and timse-interval probe. $\begin{array}{ll}\text { It can be obtained from from H-P at } \\ \text { Kings Road, Reading, Berks. } & \text { WW } \\ \text { KW0 }\end{array}$ We have received from Raindirk a brochure on the Status 250 W Audio Power Amplifier and
control unit They are control unit. They are intended for professional
or public address work and are housed in 19
inch rack-mount inch rack-mounting enclosures. Information
from Raindirk Ltd., Downham Market, Nor folk. A programmable sequence controller from
Tempatron is fully described in an informative
brochure tron Ltd., at 6 Portman Road, Battle Farm Estate, Reading, RG3 IJQ. A complete list of books for the amateur electronics enthisiast is published by Bernard
Babani (Publishing) Ltd., The Grampians, Bacani (Publisising) Ltt., The Grampiains,
Shepherd's Bush Road, London W6 7 NF .

Matsushita disc for world-wide video market?

Thorn-EMI are setting up a joint venture with
General Electric (USA) to support the intron General Electric (USA) to support the introduc
tion of the VHD video disc sytem in the USA Three new companies consist of an equipmen manufacturing company owned jointly by Mat sushita Electric Industrial Co, its subsidiary
Victor Company of Japan, and General Electric, a programme management company and a dis manufacturing company, both jointly owned by
Thorn-EMI, Matsushita Thorn-EMI, Matsushita and GE. Plan is to
introduce the video disc system by the end of 1981 with 200 programme titles, mainly films but with some original material, followed by introductions in France and Germany at
"perhaps six-month intervals". General Electric is in third place in the US television market with a share of 7.5%, after RCA and Zenith both of whom
video disc system.) The news followe
The news followed the April announcement
of Thorn-EMI and the Victor Company
agreeing to "co-spere agreeing to "co-operate on a world-wide basis in
all aspects of the promotion of the vhd system", suggesting that a software link was needed be-
fore GE would commit fore GE would commit themselves to VHD.
Disc mastering and pressing plants an Disc mastering and pressing plants are planned
for Europe, Japan and the USA, though locafor Europe, Japan and the USA, though loca-
tions are not finalized. Neither apparently is the ownership, because a European plant could
either be a Thorn-EMI company or a jointly owned company, according to a or a jokesmantly
Thorn-EMI say they plan to manufacture equípment here on a progressive basis, but no
timescale is timescale
equipment but have not yet manufactured it.) Thorn clearly look on their VHS collaboration with JVC as very successful, and have un-
doubtedly been a maior factor in helping video doubteding to reach 2% market penetration in a
recording year less than it took in the USA.
Prices of equipment
Prices of equipment will be close to the $\$ 500$
of the RCA video disc player planned for launch early in 1981. $\$ 530$ to 550 is suggested for the
USA and USA and $£ 250$ to 280 in the UK, with a separate
Undom access unit $\$ 150$. random access unit at $\$ 150$. Magnavox - who
recently stepped up their initially modest marketing - and now Pioneer have optical players prices at $\$ 700$ to 775 .
The add-on random access unit recently fast visual search, quick play of two, three, four or five times normal speed, slow motion of half, quarter, eighth, and sixteenth time for selected
addresses and times, sequential play of differing functions, and interrupted mode changes and programme skip. Some of these functions are integrated with a player in one prototype but in
the interests of low player cost the specialized functions will be offered separately. But with an NTSC player speed of $900 \mathrm{rev} / \mathrm{min}$ and two picture frames per revolution, showing (two)
still pictures normally leads to unacceptable picture quality, unless special steps are taken. One possibility is to encode two identical frames next oeach other, but done throughout a record this would cut playing time in half. Another is to
make use of a memory to delay a frame's worth
of picture - as done at the demonstration -
but the size and cost of this solution is still The demonstration showed better quality than that from video recorders, but a muffled sound quality indicated restricted h.f.
response. As the preliminary brocure response. As the preliminary brochure claimed
an audio bandwidth of 20 kHz , this left one wondering about the validity of the remaining neagre information. Thorn/JVC would not

Three NTSC versions of the JVC
capacitance electro-guidance video disc
player. Latest prototype player, right, claimed to be simpler and cheaper than Phillips-type optical player and to have versatility associated with servo-assisted pickup, though freeze-frame is still a
problem.
claimed instead that it was "competitive" with a Philip-system piature, and making it clear that
Philips shemselves claim compatibility with Philips themselves
broadcast picture. broadcast picture.
Another add-on unit will be a p.c.m. demo Another add-on unit will be a p.c.m. demo-
dulator
months Thich will forn say - for VHD by $6-8$ months Thorn say - for use with sound-only
records and dubbed AHD (audio high densty) A 16 -bit linear code and 47.25 kHz sampling rate now supersedes the earlier proposal of 14 -
bits and 44 kHz semplin bits and 44kHz sampling. Another change since
VHD was first announced two years ago is VHD was first announced two years ago is a
reduction in disc size from 30 to 26 cm , aimed at easing manufacturing problems, together with acceptance or a disc case for dust scratch and fingerprint protection.
Both JVC and Thorn-EMI are still secretive about technical aspects of VHD, in sharp contrast to their rivals RCA and Philips, and only scant details have been issued. The gist of
this is that in recording a VHD disc, a rotating glass master coated with photosensitive material
is irradiated by a laser beam modulated is irradiated by a laser beam modulated simul signals to produce a spiral of pits. This is used to prepare a metallic master by "the conventional
audio process". The conductive audio process". The conductive p.v.c. pressings
made from this are said to require no further processing: obviously the basis for JVC's claim or "highly competitive" disc manufacturing cost. But with around 50,00 turns to a spiral and a pitch of $1.35 \mathrm{um}-40$ times smaller than
an audio disc - -one wonders what the rejection
rate will be? an audio disc
rate will be?
Playback relies on a capacitance effect between the conductive disc and an electrode coat-
ing on the stylus, much as in the RCA disc yystem. In the RCA player the stylus is mechanically guided and rests in one spiral
turn, whereas in the IVC disc it rests over ten turn, whereas in the JVC, disc it rests over ten
spiral turns (JVC claim 2000 hours stylus life) and is electrically guided. The stylus assembly is
servo-controlled by marker pulses on either side of signal information, both laterally to ensure of signal information, both laterally to ensure
proper tracking and longitudinally to give time
base proper tracking and longitudinally to give time
base correction. The modulation scheme uses
the usual f.m. video carrier the usual f.m. video carrier, with pedestal at
6.7 MHz and a deviation of 1.4 MHz (according to the brochure) or 1.8 MHz (according to the press data), described as "single carrier compo-
site" - not the "colour-under" approach they stress - but more than that JVC won't say.
Which presumably means that it hasn't yet been finalized.
RCA responded to the Thorn/JVC/GE announcement by claiming theirs was "a unified
operation ranging from research and development of manufacture, marketing and pro-
gramming - not an alliance among individual gramming - not an alliance among individual
companies which are diverse both in geography and marketing concepts"s". Scheduled for US
introduction in the firs introduction in the first quarter of 1981 with a
programme catalogue of 300 titles, the RCA rogramme catalogue of 300 titles, the RCA
capacitance electronic disc system, CED, is also capacitance electronic disc system, CED, is also
expected to be made by CBS and Zenith. RCA
say they expect to sell say they expect to sell 200,000 players alone
next year.

Micro-based marine d.f. set for a fast "fix"

High-speed processing, leading to a rapid "fix"
and safery at sea, are the two points which re-.
ceive grearing remain in memory until the naviga-
tor is ready to "lay them off" onto a standard
chart with High-speed processing, leading to a rapid
and safery at sea, are the two points which re-
ceive greatest emphasis in the technical litera-ceive greatest emphasis in the technical itera-
ture accompanying the Syma Offshore Naviga-
竍 ture accompanying the Syma Offshore Naviga-
tion System (the ONS 4000). This equipment
has been developed and manufacured by has been developed and manufactured by
Sysmaster Ltd, of Farnborough, Hants (an off-
shoot of System Designers of Camberley) in shoot of System Designers of Camberley) in
collaboration with the National Research Development Corporation.
The equipment, tor is ready to "lay them off" onto a standard
chart, wiith frequency, time and bearing indi-
cated digitally on a l.c.d. panel. A small loudcated digitally on a 1.c.d. panel. A small loud-
speaker provides positive morse code identifica-speaker provides positive morse code identifica-
tion of each beacon. A motor-driven ferrite rod
aerial acts as the scanning sensor aerial acts as the scanning sensor, housed in a
weather-proof caating with a stainless steel sense aerial mounted on top.
Programming of the unit is carried out by the navigator to preset frequency and programme
times of a chosen set of coastal m.f. beacons. A times of a chosen set of coastal m.f. beacons. A navigator. Station tuning in the radio unit is by
frequency synthesis and beacon bearings are frequency synthesis and beacon bearings are
derived from a statistically averaged series of measurements, giving accuracy without the need for high signal strength from each beacon, which may be difficult to achieve in bad weather
or poor propagation conditions. This technique, The equipment, which is basically a
microprocessor-controlled d.f. radio receiver, microprocessor-controiled d.f. radio receiver,
combines digital, analogue and radio techniques to achieve automatic operation. The unit
synchronizes with the six-minute radio beacon cycle, automatically fixing and memorizing up to six compass bearings derived from the builtin electronic compass - this is a gimballed
fluxgate unit which senses the earth's horizontal magnetiç field.

NEW BBC
TRANSMITTERS
Three BBC transmitters began operation on 29 August covering the remote villages of Armath-
waite and Lazonby in Cumbria, Newton Abbot in Devon and Ashford in the Water, stations are vertically polarised. Further information can be obtained from the Engineering Information Dept., Broadcasting House, Lon-
don W1A 1AA.

The display terminal and keyboard of the Box Office Computer System (BOCS), shortly to
be launched by a development company with a science be launched by a development company with a science-fiction ring to its title - Space-
Time Systems Ltd. The system plans and displays, for example, the sold, unsold and reserved status of up to 2,000 seats at a time and Space-Time Systems foresees it even.
etc.

System X now in service

Britain's first all-electronic telephone exchange
has been operating in London for over three month. It is the firss example of a piece of
hardware in British Telecom's System X famity to go into full service, and is what is known as a junction tandem unit, switching telephone calls between some 4 local exchanges in the capital.
Other types of System X units are local exchanges and trunk exchanges. Installed in Baynard House, a new British Telecom building in
switched over 2.5 million calls from July 1 to the
sime of goin
and 7 ft high by 3 ft wide, it can handle 150,000 calls per hour. An lectur-mechanical cross-bar ex-
change would require about 400 such racks to do the same iob. The failure rate so far has been 1 or 2 failures. in 4000 calls, but British Telecom
expect this to be reduced. Main contractor for expect this to be reduced. Main contractor for
the exchange was Plessey Telecommunications. the exchange was Pressey Telecommunications.
System X differs from earlier electronic exchanges installed in the UK which use reed
relays for the final switching of lines and are relays for the final switching of lines and are
therefore not fully electronic. It uses digital semiconductor devices throughout, ranging from discrete transistors, through integrated
circuits up to 1.5. i. devices. In the Baynard circuits up to 1.s.i. devices. In the Baynard
House tandem exchange low power Schotky t.t.l. devices are used widely and. there are also
m.o.s. devices. . Because of the modular design t.t.I. devices are used widely and. there are also
m.o.s. devices. Because of the modular design
of all System of all System X sub-assemblies, it will be pos-
sible to introduce newer devices such as c.m.o.s. logic and magnetic-bubble memories at
later stages as the technology develops. All the later stages as the technology develops. All the
operations in the Baynard House exchange are operations in the Baynard House exchange are
controlled by a stored program. Calls are set up, controlled by a stored program. Calls are set up,
faults are identified and the whole system is managed by computer-like processes. The
equipment also uses what is called common equipment also uses what is called common
channel signalling, a technique in which the signals controlling calls and managing the network are passed
data transmission.
The transmission and switching functions in the exchange are brought together into a com-
mon digital mode of operation. For exaple mon digital mode of operation. For example,
incoming calls from the 40 or so conventional London exchanges first of all have the analogue Lseech waveeform separated from the siganalline
pulses. Then the speech waveform is converted pulses. Then the specch waveform is converted
intol 30 -channel p.c.m. form and the signaling
uulses are transformed into suitable digital ininto 30 -channel p.c.m. form and the signaling
pulses are transformed into suitable digital in-
formation for insertion into a particular timeslot of the p.c.m. system. The combined timedivision multiplexed information is then passed exchange. A converse process takes place, of
course, with calls going out from the System X course, with calls going out from the System X
tandem to the conventional local exchanges.
The first all-electronic local exchange in the System X scheme wertill
Woodbridge, Suffolk.

News in brief

Agreement has been reached between Philips of
Canada and the Bendix Corporation of Baltimore, Maryland, USA, giving Philips exclusive rights to the Canadian manufacture and sales of Bendix's
MLS. British Telecom's optical fibre network con-
struction has had another leg completed with
the installation of the first 140 Mbits section truction has had another leg completed eintion
the intallation of the first 140 Mbits section
from London to Reading. The eight-fibre cable, fhe instalacion of eading. The eight-fibre cable,
from London to
which carries data equivalent to 1,920 telephone which carries data equivalent to 1,920 telephone
channels, has been carried out by Telephone
Cables Ltd, a subsidiary company of GEC.

The second US/Southeast Asia TelecommuniThe second US/Southeast Asia Telecommuni-
cations Conference and Exhibition is scheduled
for December 3 and 4 at the Mandarin Hotel in for December 3 and 4 at the Mandarin Hotel in
Singapore. Detailed information may be obtained from John Sodolski, Electronic Industries Association, 2001 E.
ington DC 20006, USA.
Electronica 80 is being held at the Munich Fair Grounds from 6 to 12 November 1980 and constitutes the ninth international trade fair for component
this title.
Hitachi is to set up a television components This new arm of the company, to be known as Hitachi Consumer Products (Malaysia), will rest upon the ioint investment of Selangor and Hitachi and will make the standard range of tv com-
ponents such as deflection yokes, line output transformers and tuner units. Operation is scheduled to begin in June 1981

Greenpar Engineering Ltd, Harlow-based manufacturers of coaxial connectors and r.f.
components, have changed the name of the components, have company to Greenpar Connectors, Ltd.
cold

The gold used as plating for contact surfaces in changes is to be reduced from its present thickness of $\{$ microns to only $21 / 2$ microns. British Telecom, the telecommunications part
of the Post Office, topes by this action to save of the Post Office, hopes by this action to save in October.
In spite of $£ 450,000$ lost on a turnover of $£ 1$ million in its second year of trading, Compeda,
the company set up by the National Research Development Corporation to market British in selling a $£ 250,000$ system chip design system to General Electric of the US. Compeda's managing director said that the projected turnover
for $1981 / 82$ was about for $1981 / 82$ was about $£ 3$ million and the com-
pany should be making a profit by next sumpany sh
mer.
IPAT '81, the International Conference on Ion Amsterdam from 30 Juniques, is to be held in Amstercam from 30 une to 2 zuly 1981 . The
conference will include information of the latest developments in ion plating, ion implantation,
ion beam processes, molecular beam epitaxy, plasma deposition, plasma enhanced c.v.d., sputtering, reactive techniques, plasma etching,
plasma processing and testing of coatings and plasma processing and testing of coatings and
coating equipment. Papers are welcomed on the themes outlined and authors should submit ab-
stracts of $200-300$ words immediately the stracts of $200-300$ words immediately, the
deadline being 11 November 1980. Address entries to the Secretariat, IPAT ' 81 International Conference, 26 Albany St, Edinburgh EH1
3OH.

Times change

BBC2's clock, seen in some links between
television programmes, is now generated electronically instead of optically. There is no mechanical clock and no camera or slide scan-
ner. The new display is of a clock face, with ner. The new display is of a clock face, with
hour, minute and second hands', and a apattern to indicate the channel, different techniques
being used to generate the being used to generate the two.
The channel number display use The channel number display uses a process
known as run-length encoding, in which data is stored in a programmabbe, readdonnly
memory in a form which greatly reduces the memory in a form which greatly, reducecs the
amount of memory needed. Each change of colour and width of symbol requires only one
byte of data instead of byte of data, instead of one byte for every ele-
ment of the display ment of the display (the memory-mapped
technique). In this way, fixed patterns, such as technique). In this way, fixed patterns, such as
the Open University logo, which also uses the
new technique are new technique, are produced with a smaller
memory than would otherwise be needed, al-
though movement can be obtained by using microprocessor to change the data in a random-
access memory in real time. The data is then taken directly from the r.a.m.
Two types of storage are needed for the clock
The hour markings and clock face are cept p.r.o.m., being read out in synchronism with the television line waveform. Only one quadrant
need be stored, since the other three are obneed be stored, since
tained by symmetry. Data for the 'hands', however, is in in
r.a.m. An erasable p.r.o.m. controls a
microprocessor, which determines the time and microprocessor, which determines the time and
calculates the angle of the hands. Break-up of calculates the angle of the hands. Break-up of
almost-horizontal edges is reduced by varying almost-horizontal edges is reduced by varying
the output waveform to take account of the
television line stret television line structure.
The BBC expect to generate the BBC1 clock
in a similar way next year.

BBC engineers with the new television clock. Richard Russell, whom readers will lomember for his work on the Wireless World teletext decoder, and who designed the Mitchell, second from left, and the Open University symbol data was the work of Ewen

Inmarsat to lease satellites

With a world-wide satelitite communications
system as its objective, the International Mariystem as its objective, the International Mari
time Satellite Organisation (Inmarsat) is to sider supply contracts from satellite organisations, with plans to expand coverage by putting three additional geostationary satellites into or-
bit, one for each of the world's oceans. Two ${ }^{\text {spare craft }} 175^{\circ} \mathrm{E}$, supplementing these three at $65^{\circ} \mathrm{E}$, $175^{\circ} \mathrm{E}$ and $335^{\circ} \mathrm{E}$ respectively, will also be put into orbit.
Although
ion, the choice is likely to include the EuropeanSpace Agency's Marecs, Intelsat V and Marisat. Marecs has a capacity of 46 voice channels ${ }^{\star}$ and
s a dedicated satellite, i.e. as it is used exclusively for maritime channeles shere is nod danger of
interference with other signal trafic, although interference with other signal traffic, although
such satellites are comparatively expensive. Part of the leasing programme, which will
begin in 1982 , will include offrs
begin in 1982 , will include offers of short-term
channel capacity. While existing Marisats were are now expected to last for another two years. Lundberg, of Inmarsat in London, says under-used, even though use per ship is quite high. On the other hand, he estimates that there
will be around 2,500 contrasted the normally slow rates of information processing through conventional maritime
radio comsinunication with the speed of compuradio communication with the speed of compu-
ter-controlled services on land, notably in the case of oil companies, who need dast commu-
nication from sea rigs to shore bases. He says nication from sea riss, to shore bases. He says
that this problem can be solved by the commu that this problem can be solved by the commu-
nications power of satellite telephone, telex and facsimile operation and companies will not be
slow to recognise the advantages of the system. *Capacity of one voice channel is equivalent to
22 telex channels.

Monitor device regulates heart-beat

One of the latest medical spin-offs from the
NASA space programme is an implantable NAAA space programme is an implantable
hearatassist deverice developed by Michael
Mirowski, MD, of Sinai
 aid sufferers with a condition known as ventricular fibililation.
The device is ab

 and to recognize life-threatening arrhythmias. If
these ocuurit provides an elecric shock trough these occar it provides an electrir shock hrough
electrodeses directly in in ontact with the hearas so as to restore its normal rhythm. The first shock

Oulse occurs 15 seconds after the fibrillation | begins, $\begin{array}{l}\text { iving the heart a chance to correct } \\ \text { isself. If the first shock has no effect, three more }\end{array}$ |
| :--- |

 lished, with the last woo shocks being increased
in intensity. The unit is powered by lithium

Digital television demonstration

Now that much more studio equipment in
television broadcasting is going digital, television broadcasting is going digital, broad-
casters throughout the world are trying to estabCasters throughout the world are trying to estab-
lish a common standard for digital information
transfer by which transfer by which this equipment can be in-
terfaced and made compatible. In Europe the
EBU is working terfaced and made compatible. In Europe the
EBU is working towards an interface standard
for the 625 -line system and in the USA the for the 625 -line system and in the USA the
SMPTE is doing likewise for the 525 -line SMPTE is doing likewise for the 525 -line
system. Both of these organisations are also
隹 working together to try to achieve a truly inter-
national standard. One problem is what to ennational standard. One problem is what to en-
code digitally, the composite video signal or its separate luminance and chrominance compo-
nents. To help interested engineers understand what
is going on the IEE has organised a demonstrais going on the IEE has organisd a and
tion and colloquium on "Digita television" on
31st October, in the IEE building, Savoy Place, tion and colioquium on builing, Savoy Place,
31st October, in the IEE buid
London WC2R OBL, starting at 10.30am. You have to register beforehand by getting a registra-
tion form from the IEE (tel: $01-240$ 1871).

"Radar-invisible"

aircraft? Back to the drawing board!
Fighter planes known as "stealthy aircraft,"
built and tested by Lockheed Aircraft Cor poration for the US Lockneed Aircraft Cor-
pere Department and claimed to be "virtually invisibule" to radar,
appear to be less than succesfful at the basic appear to be less than successful at the basic
business of remaining in the air - all three business of remaining in the air - all three
protorype machines have crashed because of their peculiar shape.
The Guardian (22 The Guardian (22. August 1980) reported that
many observers have been excited at the pros many observers have been excited at the pros-
pect of penetrating Russian air space unnoticed
and other accounts suggest that the pet of onetraing Russian air space unnoticed
and ong ernocouts suggest that the technique
being employed in the aircraft is a combination being employed in the aircraft is a combination
of "rounding off corners" (sharp features of rounding off corners (sharp features
produce maximum radar reflections and that of
coating the aircraft with "radar-absorbent" coating the aircraft with "radar-absorbent"
material, which in reality disperses the returnmateraal, wiich in
ing radar signal.
This is not the first time such material has
been tried. During the Second World War Gerbeen tried. During the Second World War Ger-
man U-boats were coated with a compound
called Sumpt which was washed away by sea water.
batteries with a life span of three years or 100
shocks shocks.
NASA and the Applied Physics Laboratory
have devver have developed a monitoring and recording de-
vice for the unit which can be worn by the vice for the unit which can be worn by the
patient and which stores electrocardiographic patient and which stores electrocardiographic
data, the number of fibrillating episodes, pulse applications and the long-term performance of the implanted device.
The New England Journal of Medicine reported on the implant device in a pilot study by
a team of scientists from Sinai Hospital of Batimore, the John Hopkins Medical Institutions
and the John Hopkins Applicd Physics and the John Hopkins Applied Physics
laboratory, although the automatic defibrilator (its commercial name is AID) is being manufac-
tured by Medrad/ntec tured by Medrad/Intec Systems of Pittsburgh,
Pennsylvania in its evaluative stage. The units Pennsylvania in its evaluative stage. The units
are not yet available commercially.

tingham stereo service.

Prestel cgrows,
"Prestel is now a reality in most of the major
cities and regions of the UK," according to cities and regions of the UK," according to
Richard Hooper, the director of this British
Telecom Celec you have to interpret what he means by "a
claim reality". Although the Prestel service will be
available to approximately 10 million UK teleavailable to approximately 10 million UK tele-
phone users by the end of 1988 , the number of
people who are actually connected as subscribphone users by the end or ponected as subscrib-
people who are actuall conne
ers is pitifully small. At the time of going to press it was 5260 . At the present rate of growth
(about 500 per month) this could become 8,000 or so by the end of the year. Of the total of $5,-$
260 , only 588 were private households, indicating that the principal growth of the service has
been among business and professional users. been among business and professional users.
This must be seen as a disappointing start, par-
icularly ffter the publicity ticularly after the publicity campaign put on
earlier this year and the fact that British earlier this year and the fact that British
Telecom forecast 27,000 users by the end of Teleo. Prestel has now been operating for about a
year (see December 1979 issue, p. 55). year (see December 19979 issua, p. 55 .).
Clearly Mr Hooper's reality means the Clearly Mr Hooper's reality means the availa-
bility of the service to UK citizens who have telephones. This is certainly citizens. At whe begin-
ning of 1980 Prestel was available only in ning of 1980 Prestel was available only in Lon-
don, Edinburgh don, Edinburgh, Glasgow, Birmingham and
Nottingham. By the early autumn Leeds, Notungham. By the early autumn Leeds,
Brighton, Reading and Sevenoaks had been
added. In the coming few months the service added. In the coming few months the service
will be extended to other important towns inwill be extended to other important towns in-
cluding Cardiff, Belfast, Norwich, Bournemouth, Chelmsford and Luton.
It seems likely that the slow
It seems likely that the slow growth of the
Prestel market, relative to the British Telccom forecast, is due to the present high cost of being a subscriber (details of installation and running
charges were given in our December 1979 recharges were given in our December
port).
This cost will go even higher with the new telephone tariffs recently announced by British Telecom. A related problem here is that the
price a user is prepared to pay will depend on price a user is prepared to pay will depend on
the amount of information he can get out of the service, but already the information providers
are becoming restive because of the small are becoming restive because of the small
number of users whom they can reach to sell number of users whom they can reach to sell
their information to. There is clearly a chicken-and-egg problem in the growth of the market.
However, Mr Hooper may well be committed However, Mr Hooper may well be committed
to the idea of getting the charges down, for last to the idea of getting the charges down, for last
year, before he became director of the service,

Radio Nottingham now

 stereoBBC Radio Nottingham became in September the first BBC local radio station to start a regular
service of stereophonic broadcasting. New studios using stereopo sound droadcasting. New stubeen built in some old offices at the station
Considerable reconstruction was done while the Considerable reconstruction was done while the
station was actually on the air. Quite apart from
te the installation of the new equipment, the
offices needed acoustic treatment to convert offices needed aco
them into studios.
Listeners will find the stereo service on Radio Nottingham's v.h.f. frequency of 95.4 MH ,
broadcast from the Colwick Park transmitre broadcast from the Colwick Park transmitter.
The BBC say that most listeners with stereo tuners or music centres should have no problem in receiving the service, and that listeners with
mono sets listening on v.h.f. or medium-wave mono sets listening on v.h.f. or medium-wave
will not notice any change. Aerials set up for the nitional radio services in sterroo may need some
natiustment to make the best of
and adjustment to make the best of the Radio Not-
tingham stereo service.

Spark gaps

Transient protection in high voltage, medium current applications

Because many electronic circuits are subjected to voltage transients whic some form of protection should b provided. A simple and effective method of protection is to use a spark-gap device which reacts more tuan an a highwortage transient than an electro-mechanical or solid the problems and parameters which must be considered when using a spark gap.
Spark gaps vary in style and construcions, the simplest type consirent applicaelectrodes moulded into an open plastic frame as shown in Fig. 1. However, more elaborate design is required if high voltage and current are combined with a high spark repetition rate. This type is usualy an inert gas, and high temperature alloy lectrodes as shown in Fig.
In a two-electrode spark-gap the insulation is very good at low voltages, and no increases, the few electrons present in the gap; due to cosmic radiation and other ionising effects, are accelerated until they are able to ionise atoms of gas in the
vicinity of the electrodes. This vicinity of the electrodes. This causes an
avalanche effect as the additional electrons produce further ionisation, and as the current increases the voltage falls as shown in Fig.3. A further increase in current causes heating of the cathode by emission sites and a transitory glow discharge. The increased current eventually produces an arc discharge, or spark, with a peak current determined by
the external circuit. After the spark has he external circuit. After the spark discharged, ionsan of the gas dil condition. In some tv receivers the focusing circuit
for the c.r.t. can, under certain fault confor the c.r.t. can, under certain lectrode to
ditions, expose the focusing elector ditions, full 25 kV from the e.h.t. supply sible damage, the spark-gap must fire and divert the 25 kV source before the pulse height reaches a dangerous level, but must also remain in a stable unfired state at the
maximum focusing voltage. These two limits are used to determine the breakdown requirements for the spark-gap, and popular breakdown bands are 7 to $9 \mathrm{kV}, 8$ to 10 kV and 10 to 12 kV .

The breakdown across a gap is determined by a complex and interacting set of parameters such as electrode shape, gap
size, gas pressure, composition of the gas and the type of external circuit. To obtain a precise breakdown voltage, the ideal shape for the electrodes is two large spheres, which produces a high degree of feld uniformity where the spheres a
closest. Therefore, when the voltage is increased, the change from the Townsend or "dark" discharge to the avalanche breakdown occurs quickly across the whole width of the field. If, for example, electrodes with sharp edges are used, a
non-uniform field is produced and as the voltage increases, the transition from a "dark" discharge to a total breakdown can be pre-empted by a corona or brush discharge. Although this is a self-sustained
discharge, it does not represent a failure of discharge, it does not represent a failure of
the entire gap and the rest of the gap will continue to carry a "dark" current. A further increase in voltage causes the corona to spread across the whole field and complete breakdown then occurs. For this
reason, when wire electrodes are used, care must be taken to form the wire into a smooth curve to avoid pre-breakdown corona. It is also important to use a wire which is free from surface damage, and to ensure that the free end of the electrode is
either embedded in the insulating case material or bent away from the gap as shown in Fig. 4.
Unfortunately, simple rules cannot be applied when calculating the gap size required for a given breakdown voltage is not ideal, the breakdown will vary with wire diameter, and the field will be modified by the case dielectric. However, it is easy to achieve the required breakdown voltage by trial, and then repeat it by gap siże.
For a given electrode geometry, the spark breakdown voltage also varies with pressure. The normal range of pressure variation in the 0 K is from 728 to
773 mmHg (970 to 1030 millibars) which, with a 5 mm gap, is equivalent to a change in breakdown voltage of 700 V as illustrated in Fig. 5. Therefore, if the spark gap is not totally sealed, and subjected to norma atmospheric pressure variations, it will
stay within about 500 V of the specified value. In the case of a sealed unit significant pressure variations will be caused by changes in the ambient

Fig. 1. Open construction spark-gap.

Fig. 2. Ceramic spark-gap.

Fig. 3. Voltage - current characteristic of a

Fig. 4. Electrode arrangement.

Fig. 5. Effect of pressure variation on spar breakdown, voltage.
ange is not uncommon and represents pressure change of 110 mmHg , which is equivalent to a 2.3 kV change in
breakdown voltage. From this example breakdown voltage. From this example it
is clear that a sealed unit is not suitable for is clear that a sealed unit is not suitable fo
applications with large temperatur changes.
If the spark gap is not sealed, composi tion variations of the atmosphere car cause large changes in the breakdown
voltage as illustrated in Fig. 6. For this reason it is important that the air in a unsealed unit does not become con taminated, and the use of a thermoplasti for the case is recommended because it does not emit vapour when subjected to
modest heat. Thermosetting resins however, usually contain reactive hardeners which can cause atmospheric con tamination, particularly in small enclosures. If a low quality plastic casing is
used, water vapour can be absorbed to create surface leakage currents which can modify the mode of breakdown. This type of leakage can be eliminated by treating the surface of the plastic with a hydrophobic material such as a silicone resin,
which prevents the formation of a continuous moisture film.

Contrary to popular belief, contamin dion of the spark-gap atmosphere wit moisture has little effect on the breakdown
voltage. Changing the relative humidity from 0, to 100% causes the breakdown independent of electrode shape and gap. A knowledge of the external circuit necessary before a realistic test procedure can be defined. Three important facts essential to optimise the component design
and carry out the tests, are the amount of energy to be discharged across the gap, the ate at which this energy is dissipated ictated by the maximum discharg current, and the expected discharge repeti ion rate. The test circuit shown in Fig. where a 25 kV e.h.t. supply charges a 5000 pF capacitor through the $40 \mathrm{M} \Omega$ esistor. The capacitor can be discharged cross the spark gap by an igniter which is to fire at any pre-determined rate round 1000A. When the energy from the capacitor is ischarged across the electrodes, it causes itense surface heating which coats th metal and causes leakage currents. Th extent of this effect depends on the olatility of the electrodes and the peak evel of energy being dissipated. Becaus he energy of the discharge is proportional the square of the voltage, the problem With a 1000A limit on the discharge

Aerial design book

Articles on aerial design, aerial theory and wave propagation, published originally in Praccical Wireless, have been collected together in a book,
entitled Out of Thin Air. The aerials described are mainly for amateur use, although there is m.w./l.w. loop. Additional articles include survey of propagation modes, a piece on the
influence of the sun on propagation, and a discussion of v.s.w.r. at v.h.f., together with a v.s.w.r. meter design. The book is well present ed, with large diagrams where necessary, and a
useful feature is a directory of aerial suppliers. It costs $£ 1.25$ from bookshops or $£ 1.50$ by post
from Lavington House, Lavington Street, London, Lavington
SE1 OPF.

LETMNEDS TOTMUE EDITOD

PICKABACK SPARKS
I have recently uncovered an electrical effect
which may be new to your readers. I myself I have recently uncovered an electrical effect
which may be new to your readers. I myself
have not seen anything of it before in my almost have not seen anything of it before in my almos
50 years in a physics labortary 50 years in a physics laboratory.
I had been thinking of possible means for enhancing the ignition spark in cars when it occurred to me that it might be possible to play charged low voltage, high capacitance, capacitor, hopefully to provide a discharge path. I did not have an ignition coil by me, but I did have a essa coil. A Tesla is used in high vacuun
work and gives a high frequency oscillatory discharge with sparks up to an inch in length I charged up a 1 FF capacitor to llV , earthed
one lead and approached the other lead with the Tesla. Momentarily there was one long vigorou discharge and it was apparent that I had
empied my half joule int emptied my half joule into a long spark. The
ordinary car ignition spark is roughly a hunordinary car ignition spark is roughly a hun-
dredth of that. I tried the same thing later using a car ignition coil but could not get the effect. It
dit
seer seems that a single stroke is not sufficient - it is the second or subsequent
the low impedance path.
I suppose that this effect is highly significant
I
Ihen when considering the mechanics of lightning.
think, too, that I can just start to imagine whorl of energy in the form of a plasma consist ing of interchanging r.f. and ionic currents
which might go some way towards explainit which might go some way towards explaining
the phenomenon of fireballs. Has anyone dethe phenomenon of fireballs. Has anyo
tected r.f. interference from such balls? A short while ago I was working a Van der
Graaf generator Graaf generator on a bench in my room: the
earthing got a little bit out of hand and so did earthing got a little bit out of hand and so dic
the sparks. The main 40 -mp fuse blew. I found the fault; a practically unused mains socket some eight feet away had burnt out and the
presence of craters on the pins indicated that a presence of craters on the
gigantic arc had occurred.
Perhaps the effect is better known than I had thought?
Oohn T. Lloyd
Department of Natural Philosophy
epartment of Natural

DIGITAL ELECTRONICS AND 'DEFENCE'
Some crucial factors have been missed out of the ics and on the status of engineers. The only thing that separates a good electron-
ics engineer from a cowboy is that the former ics engineer from a cowboy is that the former Digital electronics represents overwhelmingly the major part of the electronics engineer trade. Even though this has been the case fo fuse to teach even the rudiments of the subject Digital electronies is different from its antecedents in that one little flaw causes catastrophic
feilure. The result is that even well-motivated failure. The result is that even well-motivated
well-intentioned electronics engineers today produce products which do not work, with the exception of trivial ones. Today a traine
electronics engineer is indistinguishable from electronics engineer is indistinguishable from a
cowboy, except that he will be more methodical
about the way he goes about developing non At a seminar held in Hull University to
discuss college electronics syllabuses recently, discuss college electronics sylabuses recently,
gave a paper in which. I challenged any company with a multi-million pound project in development with significant digital electronic content to take me on board, and if within thre months Idid not find fatal flaws in their produc
which meant it would never be viable, I would pay a heavy financial penalty. There were n n takers, although the challenge was published
In view of the non-existence of training or education in digital electronics, only a foolhard company will today embark on a large digita electronics project unless the final product doe
not need to work. The recent retrenchment of not need the work. The recent retrenchment of of little systems represents a recognition of $m y$ doned, the company responsible hushes it up doned, the company responsible hushes it up
shamfacedy because it assumes that other (mili tary) proiects are successful. This is where military electronics comes in to save the "profession
and give continued employment to people like and give continued employment to people like
me. When a maior weapons system fails to
work work, the record is falsififed 'for reasons of secu-
rity', The Ministry of Defence (themselves ter rity'. The Ministry of Defence (themselves ter-
ribly ignorant of digital electronics for the same reasons), will pay anyway.
I see the military budget in electronics as
useful device to allow the colleges and faculties useful device to allow the colleges and faculties
to continue to refuse to teach the rudiments of to continue to refuse to teach the rudiments of
digital electronic design, by which I do not mean the programming of microprocessors or other prufessors do not teach the fundamentals of digital electronics because they do not know them. However, they will not let experienced,
knowledgeable people into their faculies to teach the stuff. I have been trying to get such a job for more than ten years, but real experience and knowledge of digital electronic design (This was already true years before the recent Tory recession.) So long as this situation continues, we shall continue to have a useless industry
funded by government largesse, the so-called funded by government largesse, the so-called
defence budget. Of course, since they will never work, the military products will never in fact contribute to our defence. Today we have no defences; to work in the defence industry is
polite way of being on the dole. The government is happy to fund the 'defence' industry because it masks our true unem
ployment level The trad es unions like for the ploymenien. Thustrates unions like ir for the
same reason. Indurd lar of this massive fraud being perpetrated on the taxpayer, also supports it because it is a no-
risk, guaranteed profit industry. Britain will risk, guaranteed profit industry. Britain will
disintegrate before we can overcome such a powerful triumvirate.
What distinguishes
What distinguishes our 'defence' industry from that of other countries, for instance the
USA and the USR, is that it seems invulnera ble to economic forces. During recession the expenditure, or more accurately the massive
waste, increases. It is a yery inefficient way of creating jobs to mask unemployment, but it is the only ideologically acceptable way. We are orther expenditure because of lack of governother expenditure because of
ment funds, but not 'defence'.

Some eight years ago an investigator of the being cheated of the talents of many of its finest scientists." This is much more true today. In the electronics industry the norm is for
technically ignorant and careless customer to accept useless equipment from a technically ignorant manufacturer. The so-called 'trials' are rigged. Corruption is not generally involved;
only stupidity and misplaced loyalty to their only stupidity and misplaced loyaty to thi
opposite numbers in the manufacturing com pany on the part of the treacherous representatives of the long-suffering taxpayer. on the country, which by the way incites our enemies to arm themsilves as one result of ou pretended state of military strength, we mus
have technical auditing on a par with financia auditing. At present no sanctions similar to those in case of fraud in the transfer of mone over the transfer of military hardware. over the transfer of military hardware.
It has been pointed out to me that such an auditing authority is very likely to be subverted may merely give credibility to the discredi millions of pounds for useless weaponry However, the present situation is so scandalou that a change could not be for the worse.
My proposal is that professional bodies - the I.E.E., etc. - audit trials involving equipmen where their speciality is relevant. As with cash
movements, fraud should come within the pro vince of the criminal law. An obvious sanction is that someone who has taken part, either as re desentative of the supplier or as 'represent ive' of the long-suffering taxpayer, in a fraudu-
ent 'trials' or 'acceptance test', should. be banned from practising that technical skill for a period of ten years. Ignoring the ban would be eated as contempt of court.
Ivor Catt
St Albans Herts

DISPLACEMENT
 CURRENT

Following Professor Bell's article "No radio issue), I wrote a letter which appeared under the tite "Displacement current" (November letters). A reply by Professor Bell to my letter was
published in the same issue. I felt that this reply revealed misunderstandings of a fundamental nature regarding the points I was trying to mak and I could not see how any useful purpose
would be served by my responding to it. Since however, Professor Bell has restated his arguments in the August 1980 letters it seems that must reply
$\xrightarrow[\text { My original letter contains the following two }]{\text { paragraphs: }}$ paragraphs:
"I understan was nuceessaryst to keeep bodies in in motion and that fort absence of this force, the motion would cease. This
theory led them speary once them into certain difficulties. For instance a
s. out a force being present. The philsosphers move with-
chall outa force being gresen. The philosophers rose to this
challenge magnificently with a thery
displaced from ahead of the spear tushed that displaced from ahead of the spear, rushed to the rear
and generated the requisite fore
saved. Unhertunately they meory wissed the simple point first
noted by Newton, that it is
body to coninue to move.
cII the same way I fear "In the same way I fear that Maxwell invented
complex explanation for a very simple phenomenon complex explanaiou for a very simple phenomenon
i.e. that electomagnencic radiation, or energy current
moves at the speed of light - and that's all, becaus moves at the sped of light - and that's all, becaus
that is what energy current does. No mechanisn
invoking E, invoking E producting H and H, in return, producinn
E is required." I would have thought my intention was quit
clear - it was to show, by analogy, how a fault set of primitives can lead to problems in a theor which necessitate the introduction of ad hoc
causality relations. In a similar way I believe causaity reasions. In a similia way thetieve Maxwell's equations (i.e. changing magnetic field producing electric field and changing rious. A moving body continues to move be cause that is what moving bodies do; an electro magnetic disturbance or energy current, of
whatever distribution, continues to move because this is what energy currents do. In othe words the statement "energy current travels a the velocity of light" is a primitive assumption
in my theoretical framework which requires no in my theoretical framework which requires no
further explanation. In my framework the noving energy current is the simple situation posite.
Before I leave this point I must make two Before I leave this point I must make two only seems to misunderstand my argument bu
to compound this by not even having an adequate grasp of his original article, for he states in both the November 1979 and August 1980 re plies that "I mentioned early speculation abo ion" My problem in that I I an find no such mention of the planets in Professo
Bell's article. Tue he mentios Jupite in Bell's article. True, he mentions Jupiter in the
context of the propagation of radio waves from the vicinity of this planet, but nothing else. Secondly, the relevance of Hobbes's The Le my statement that the principle of inertia was My statement hat the principle of inertia was
first noted by Newton is open to question -1
would suggest that it was probably first would suggest that it was probably first noted
by Galileo and enunciated by Newton - alby Gaghe and enunciated be Newton - al
though it little beside the point. Inci dentally, I cannot locate the passage in The Leviathan which Professor Bell is referring to and wonder whether he in fact means some
other work by Hobbes, possibly De Corpore. would in any case be obliged if he could let m have a full reference. Since The Leviathan is
work of political philosophy it would be work of paitital philosophy it would be quoted by Bell - but who can tell with philos
sta phers! Several other points are raised by Professo
Bell's letter. Before Maxwell's theory can Bell's letter. Before Maxweli's theory can b
"faulted on experimental evidence" we requir a definitive statement of that theory. Where is
this to be found? Certainly not in Maxwell' this to be found? Certainly not in Maxwell's
Treatise since this involves views regarding the aether which would not be acceptable to modern physicists. Perhaps if someone could supply a
definitive statement of Maxwell's theory. be able to suggest some experimental tests. be able to suggest some experimental tests.
Professor Bell states that he does not know what the energy current concept is or how i
relates to the Poynting vector, yet this is set out in the article by Catt (see "The Heaviside sig nal," W.W. July 1979). It surprises me that,
having stated his lack of understanding of the having stated his lack of understanding of the
concept, and apparently not having seen the
above-mentioned article, he still tries to apply it concept, and apparently not having seen the
above-mentioned article, he still tries to apply it to loop antennas, etc. It is extremely unfortunate that the displace-
ment current debate has been cluttered by so many side issues. I feel great sympathy for the many side issues. I feel great sympathy for the
impartial reader of this correspondence who is
has the greater insight into the subject. I am more or less resigned to the fact that itic netic theory because of the high 'noise level' which is generated by those who defend the established view. Where do we go from herel.is
Professor Bell says, "Everyone tends to believe what he wants to believe" or, to quote from T. S. Kuhn, ("The structure of scientific revolu
"Mific Autob Planck, surveying his own career in his Scienifict Autobiography, sadly remarked that 'a new scien-
finic truth does sot triumph by convincing is opponents and making them see the light, but rather because its opponents eventually die, and
ation grows up that is faniliar with it"
"These "These facts and others like them are too commonly evaluation. In thee fhast ther emphasis. But they do need re-to indicate that scientists, being only human, cannot strict proof I Iheir errors, even when confronted with strict proof. I would argue, rather, that in these mat-
ters neither proof nor error is at issue. The transfer of dllegiance from paradigm to paradigm is a conversion experience that cannot bbe forced. Lificleng genvistancen
particularly from those whose productive careers have commitited them those whose prodeductive careers have
science, is not a violation of scienticion of normal science, is not a violation of scientific standards sut an
index to the nature of scientific research issef. The
source of resistance is the assurance that the older pource of resistance is the assurance that the older
paraigm will ulitianely solve all its probems, that
nature can be shoved into the box the paradiem provides. Inevitably, at times of revolution, paratidigm pro-
seems stubborn and pigheneded as indeed tasurace ecomes.

Do we really have to wait for a new generation oo grow up before we can countenance changes real problem, not electromagnetism, relativity or mechanics, but how to create a forum in which proper discussion of fundamentals can take place.
D.S. Walton
CAM Consultani
Perhaps Professor Bell (August letters) really should have completed his application of the wo "disciplines" of science to both the Maxwel
and the Catt, Davidson, Walton theories CDW's theory certainly has fewer hyporheses han Maxwell's sthey only need to define wha hey mean by energy current). From the yes, and the famous $\mathrm{d} D / \mathrm{d} t$ term, which is a mathematical quantity, not a "physical cur
 electromagnetic induction.
have ever attempted to suggest that Maxwell's quations are incorrect, merely that they are for setting university examination questions. They may or may not be correct on this point, upposed to be discussing (see the editorial in he M. Migsins
then
Silts.

SATELLITE TV

As someone with a keen interest in the possibili-
ies offered by satellite tv, I was' pleased to find ties orfiered by satellitite tv, I was' pleased to find
an article on the subject in your September
tssue. This ion provided by Chriet Titulaer in his book ontitled "Televisiesatellieten", which I dis
nt
overed during a recent visit to Holland (but
which is not mentioned in your bibliography). This contains an extract from the famous article
by Arthur C. Clarke which appeared in your by Arnhal in 1945 .
Unfortunately, S. J. Birkill's article proved to
be disappointing. My interest lies in the early be disappointing. My interest lies in the early
availability of a terminal to which a conventional television receiver can be connected with a minimum of intermediate equipment and which
will afford a choice of foreign will afford a choice of foreigig broadcasts, pre-
ferably from Western Europe. Having expeerably from Western Europe. Having expe-
rienced the benefits of a cabbe relay system affording 10 channels from five countries, it is
impossible to be satisfied with the insular, paroimpossible to be satisfied with the insular, paro-
chial, bland diet of news and opinions which is served up in the UK. The Americans, it would seem, already have the choice (admintedly at a
price) of 36 channels, and home terminals are price) of 36 channels, and home terminals are these not available here? Your article shows clearly that there is no need to wait three or four
years until Europan years until European tv satellites are in opera-
ion: there are already plenty of surprises for the tion: there are alread
enthusiastic DX-er.
D. S. 尹ordan
D. S. Fordan
Canterbury

Canteroury
Kent.
There is no
There is no direct
Europe yet. - Ed.

FEEDBACK FOR P.R.B.S. GENERATORS
Mr Wood's method of determining feedback ences (September Letters) is interesting in that it avoids most of the algebra with which the problem is usually tackled, but unfortunately,
although it is certain that the circuits it eliminates won't give maximum length sequences, it doesn't follow that those which are left will. For xample, it is well known in the trade that if $a+b$ is a multiple of 8 there are no values of a
and b which will give a maximum length sequence. Such sequences can be obtained however by using the more complicated circuit shown below, with appropriate values of a, b, c and d.

The problem of finding the appropriate ure. A convenient starting point is "Shif Pe gister Sequences" by s. W. Golomb (HoldenDay, 1967). Most of us find in this book a convenient finishing point, too. It contains a
table of values of Mr Wood's a and b for values of $a+b$ up to 36 .
For those who do not have access to a
microprocessor system, or whe ave but sill microprocessor system, or who have but still
haven't learnt to use it, much can be done with a programmable calculator. You need to know hat the output of a two-input exclusive-OR ate, usually designated $a+b$ is also given by
$(-b)^{2}$ where subtraction and multiplication are $(a-b)^{2}$ where subtraction and multiplication are
onventional. Shift, if not specifically available, onventional. Shift, if not specificaly avaiable,
nay be obtained by repeated use of the memory change facility. The number of memories, rather than the number of program steps, will
sually limit the number of stages which can be
simulated. Readers can check Mr Wood's table, up to the limit of their memories and patience
They can also investigate the circuit given here for eight stages. The values of a, b, c and which give maximum length sequences, take from Golomb, are:

. S. Hal

eparment of Electrical \mathcal{F} Electronic Engineerin The City Universi
ondon ECI

The letter from K. Wood on pseudo-random issue made me wonder what problem he had cracked by simulating a shift register with feed back on Z80. My own problem a couple of year noise generator for electroacoustic work. Having bought a c.m.o.s. 4006 shift register I then had to discover suitable feedback connections in
order to get a maximal-ength pulse train Th order to get a maximal-length pulse train. Th
4006 has 18 stages so the pulse train should b $2^{218}-1=262143$ bits in length. Only 6 of the 18 stages come out to pins, and the four indepen-
dent sections of the register may be interconnected in six different ways.
I had no mind to read through all the literafound that tables of irreducible polynomial were of absolutely no help to me whatsoever apart from a little practice in decoding octal. Is
this also K. Wood's experience, I wonder? It this also K . Wood's experience, I wonder? It hardware that would have taken the 400 through all possible combinations of interest, and the task was offered as a student proiect.
However, by the end of the session no student had shown interest in such a mundane exercise So I turned to the ICL1900 series computer and rote a BASIC program that turned this gian into an 18 -stage shift register. This may well
rank as the world's least efficient compute program (if booby prizes are being offered I am interested), for it takes a computer an unmillion shifts from a high level program. Th situation was only slightly improved by repro gramming in ALGOL.
slowest part of the program, the shifting toop into machine code. The snag here was that al though the PLAN code was well documented
actually learning to use it efficiently requires some weeks of study under expert tuition. Luckily my colleague Tim Fuller took pity on me and wrote and rested a suitable PLAN seg
ment (a matter of 16 instructions) for incorporation into my ALGOL program. I was then at th point which Mr Wood seems to have reache more effortlessly with his 280 routine, and
proceeded to output sequence lengths for all feasible arrangements of connections, with the register starting from all stages set to 'rrue'. For allow me to record here the only six arrangements which gave maximal-length sequences Numbering the stage output connections from 1
to 18 , there was only a single set of 6 feedback connections, namely $4,8,9,13,17$ and 18 . With four feedback connections there wer
five alternative sets:

10	18
13	18
17	18
14	18
14	18

Naturally enough, the output from stage 18 is used in every case. It is more convenient to use
one of these five sets, as the four feedback connections can be combined using only thre quarters of a 4030 quad gate i.c.,. leaving the
fourth gate available for use as a clocking oscilla tor. If any readers have constructed the p.r.b.s. generator shown on page 43 of Electronics Today
Interational for March 1974, they should find International for March 1974 , they should finc
that it does not give a maximal lenght sequence, but one which is 262140 bits in length. It is no impossible that this might stick (on start-up) in
the four-bit sequence 001001100110011 , etc. as far as I can deduce. Can any reader confirm $\stackrel{\text { (or refute) this asseveration }}{\text { Desmond }}$ Desmond Thackeray
Department of Mu
Department of Musie
UUiversity of Surrey
Guildford

GENERATING THREE

 PHASESYour correspondent, E. V. Hurran (August,
Letters) recommends one of the Van der Po oscillators for producing a good sinusoidal output, particularly at very low frequencies. While
agreeing that the virtues of some older circuit should not be overlooked, it is our experienc that for many practical applications an oscillato with a properly engineered method of amplitud
control is needed. Without such control ther control is needed. Without such control there control of loop gain, or reliance on some degree
of saturation in the armlifier or amplifiers. of saturation in the amplifier or amplifiers. Van
der Pol assumed a 3rd-order non-linear charac teristic.
As we have shown (Electronic Engineering, 213; and Wireless World, March 1970, pp. 134 139) a satisfactory sine-wave oscillator for very low frequencies is obtained by using a two-inte-
grator loop as a selective circuit and adding feedback path containing a limiter. This produces a two-phase oscillator; but from two phases, three or any number may be obtained
by vector addition and subtraction. The distor by vector addition and subtraction. The distor-
tion introduced by the limiter is readily calcution introduced by the limiter is readily calcu-
lable and can be made small. When variable tuning is required it can usually be obtained lator.
F. E. \mathcal{F}. Girling
Malvern
Malvern
E. F. Good
Darlington.

TECHNICIANS OF SCIENCE
In reference to your editorial "Producers before rare in these times to read such an article in technical magazine. Well done! But alchough
you take a wide and simple view, the fact is that you take a wide and simple view, the act is tha
many of us can't to along with it, or even under-
stand its importance - perhaps because of the stand its importance - perrhaps because of the
very insanity of the society in which we live very insanity of the society in which we live.
Engineers and technicians must become more aware of what they're actually doing, and not
just remain content to satisfy the demands
reated by people who see everything in term
money and power. There are alternative ways, and to find them we need open minds. technical knowledge. Those people who stay at the level of technical knowledge are the techniCians of science, no matter what academic qual ications they may have - there are no instituyway. If only we could obtain a clear view of he whole system, from the small details up to
hhilosophical questions about our existence, philosophical questions about our existence,
there would be a better chance that each of us, his own job, would be doing the right thing a right time to aboiish aggression, hanmf o humanity of which you write.
As a relatively young computer engineer ulture I t try to use techniques which make th processes more accurate - but not automatic mless this is necessary because they consum too much energy or cannot be done manually since I've studied and worked in Britain and have also seen the same problems here in Israel, it's quite clear to me that we are all engulfed in
the industrial system you describe There are not many you descricibe. electronic techniques in agriculture. If any wre I will be readers to tet themeded in agriculCurrent work.
Yehiel Lionat
Kibuutz Neer-Oz
Kibbutz Neer-Oz
Doar-Na Hanegev
Doar-Nol.
Istael.

VARIABLE PHASE
 ABIAB PASE

ALL-PASS FILTER
Further to the article on page 77 of the May
ssue by T. G. Izatt and E. Bell describing a variable phase all-pass filter, the circuit per
formance described is readily obtained using formance described is readily obained using a which, due to the higher open loop gain, will ive a more precisely defined transfer function the operational amplifier)
The transfer function

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=T_{(s)}=\frac{i-s C R_{2}}{1+s C R_{2}} \\
& \text { or } T_{(\omega)}=e^{-j 2 \alpha} \\
& \text { where } \phi=\tan ^{-1}\left(\omega C R_{2}\right)
\end{aligned}
$$

Two or more such circuits may be cascaded
provide a wider range of phase variation.

. 7. Lidgey
Oepartment of Engineerin
${ }^{\text {and }}$ A. Worpe
E. A. Worpe
Department of Physics
University of Surrey The transfer function
Sluet.

COMPUTER CHAOS

 confusion of the world of computing and pro-gramming. Different mainframe manufacurers ghink fit to evolve similar systems, or systems for similar ends, that work in entirely different
ways. When they use the same interface fhere is ways. When they use the same interface there is
sure to be some minute difference making them incompatible.
Under the Under the unpleasant political systems, of
course, computer structure and software would course, computer structure and software would
be rigidly restrained. As it is, the working individual is expected to carry the burden of dif-
ferent systess and system variants which were ferent systems and syster
originally created in the hope of producing
profits which he does not see, and indeed they originaly created ine not see,
profits which he does
may well fail to materialise. may well fail to materialise.
Anyone in the top ranks of computer engiAnyone in the top ranks of computer engi-
neers can only hope to become rally affluent by
btarting neers can only hope to become really affluent by
starting a microcomputer firm which, even if it
does not collapse in a few years, will only add to the Tower-of-Babel chaos surrounding us.
Coming now to the home computer, I am still Coming now to the home computer, I am still
shuddering from an advertisement for a printer containing many complex special 1.s.i. circuits
"untested ungauranteed - what more could untested, ungauranteed - what more could
you want?" Making a note not to fit a printer, and stealing the family tv set to cut costs, one
still needs a microcomputer with high reliabilstill needs a microcomputer with high reliabil-
ity a correspondingly low cost maintenance serity, a correspondingly low cost maintenance ser--
vice, with easily expandable memory and invice, with easily expandable memory and
terfacing. BASIC alone is not going to launch anyone on a computing career and there is a case
for having PL/M resident in memory, which for having PL/M resident in memory, which
raises the question of whether amateurs should not be allowed the use of standard programmes legitimately acquired at small cost. This seems
an obvious case for state intervention, involving an obvious case for state intervention, involving a package deal for amateurs across the country. Your correspondent Russell Gad CJune/July
issue has had to write his own dissember/ issue has had to write his own dissembler/
editor for his (bought) microcomputer and this editor for his (bought) microcomputer and this
underlines the need for several programs to be provided to run the system properly. Even
writing machine code is done efficiently by writing machine code is done efficienty by
using high level language(s) and an assembler.
The amateur computer will simulate the operations of more complex computers, running at uncommercial speeds in complex work, and
the best amateurs will need access to large, the best amateurs will need access to large,
copyrighted programs. Since the computer industry can only profit from their activities it is up to them to make programs freely available. It
is not for me to stggest that in default of this is not for me to stggest that in default of this
programs will be passed around illegally; there programs will be passed around ilegally; there
should be no incentive for this if proprieary
programs are licensed to amaters at fees ref programs are licensed to amateurs at fees r
lecting the amount of use they will get. Beraard fones
London W1

RADIO AND FREE

SPEECH

In relation to the eternal prevarication over citizens' band, we should be quite clear that ours is
a representational democracy where free speec does not need to be limitred by by law free because it can be limited without it. When electrical com-
munication systems were invented, mentication secame terrified that at last anyone who
mound make a tranmitter could be heard with
cold could make a transmitter could be heard with-
out editorial filtering. The government therefore siezed the air waves much as it had siezed that other means of mass communication, the theatre in Elizabechan times. The method
was the same: licensing. Pressure from radio enthusiasts caused the government to permit
amateur transmmission. The mere achievement of
communication over vast distances with watts of power was scientific research. In the long term,
however, human communication is about what is communicated and most forms of communication were taboo under the terms of licensing. Certainly the two areas where mutual
understanding are most in need, religion and politics, are taboo. One of the most fascinating aspects of profes-
sional radio is listening to foreign correspondents assessing the situation in a country. How vastly more interesting to hear a national of that country give his own assessment. Most of it would be government organised but if the right
frequencies were kept open, illicit transmitters could be cheap and easy to construct, difficult to
pinpoint. Once it became imposisle pinpoint. Once it became impossible to clamp
down on these most governments would let them exist. Our country has been as repressive in this field as the Soviet Union and for no valid reason except the desire to keep free speech as a hollow sham.
Even more
Even more vital than communication of poli-
tical, scientific and philosophical views is the ending of the isolation of the car driver. Here and the need is to make it compulsory. Civilised behaviour is a phenomenon dependent on communication, which is why the car driver is the.
most uncivilised human being and behaves in a totally egocentric manner. It seems to me that the laws on radio waves
should be concerned with more than potecting should be concerned with more than protecting
commercial and military communication from interference and should not be used to prevent people from communicating. With the ending of the monopoly powers of the Post Office on
connecting things to telephone lines it is high time that the silly ban on competing with the Post Office in family communication was ended. Ordinary families just do not spend
hundreds of pounds 'phoning each other long hundreds of pounds 'phoning each other long
distance. Even the Queen has been held to be
bound by this silly bound by this silly rule.
Fred Allen
Fred Allen
Cambridge

AUDIO KITS

I thoroughly agree with the opinions of your ble quality of the current flood of kit-form hi-fi - variable meaning bad to worse - that is with he exception of a certain company who sell kits with pre-assembled p.c.bs. Gene
hi-fi is best avoided. Some months ago I paid $£ 100$ plus v.a.t. for a high powered (one quarter of the claimed output would be quite sufficient in my humble
home - even with highly inefficient speakers) home - even with highly inefficient speakers)
nitegrated stereo amplifier. I estimated no more integrated stereo amplifier. I estimated no more
than forty hours' work. The iob absorbed no less than eighty hours, and another fifteen hours
sorting out problems. The latter included a sorting out problems. The latter included a
special modification that only a highly qualified nsgineer could have worked out. Oh yes, the
supplier described the kit as "easy to build" and supplier described the kit as "easy to
In this day and age one-hundred hours
equates to $£ 200$ after tax, so one could say the equates to $£ 200$ after tax, so one could say that this appalling piece of equipment cost some
£ $300+$. True, sixty per cent of kit buyers are not very fussy people, but I am sure that at least forty per cent do consider returning the kits for
a refund; however, they rarely do because they a refund; however, they rarely do because they
believe that a very high standard of assembly work will compensate for the flimsy mechanical
design. This seldom works out, and in the end design. This seldom works out, and in the end
all lone can show for the monotonus Ione can show for the monotonous labours of
kit construction is a typical trash item - and more often than not a non-working one to boot.

Building a relatively simple device can prove to be highly enjoyable, but a stereo amplifier. -
So before you rush out to buy that hi-fi kit with undaunted enthusiasm, think about it very seriously, and never, never buy a kit without
first listening first listening to a built-up example and also
having a chat with someone who has built one having a chat with someone who has built one
up - even if the latter involves an advertisement in the electronics press. Be warned - sixty per cent of kit buyers
probably end up with a non-working item, and probably end up with a non-working item, and
around ninety-five are probably dissatisfied. around ninety-five are probably dissatisfied.
I firmly believe that all kit suppliers should be involved, that is, the time taken by a reasonably experienced enthusiast without previous
knowledge of the kit in question Should all audió kits carry a Government
health warning? health warning?
M. \mathcal{F}. . Eva
Worcester

WHEN BOMBING

PROLONGED A WAR

The recent commemoration of the 35 th anniver-
sary of the second world war's ending coupled sary of the second world war's ending coupled
with the second printing of Max Hasting's outstanding book, Bomber Command, makes it ap-
propriate to record the following failure in vital propriate to record the following failure in vital
communication between branches of the central intelligence command.
Hasting's
Hasting's book describes how the bombing of
Coventry on the night of supposed to have been avenged by inviting Royal Air Force personnel to choose by inviring own targets, and how a certain Boob Doord vown
unteered to bomb Eindhoven in Holland although the main option appears to have been Hamburg. It is to be hoped Dodd's navigational
skills on this occasion were no skills on this occasion were no better than when
(as the book relates) he bombed Epinay in Vichy (as the book relates) he bombed Epinay in Vichy
France in the belief he was bombing MannFrance
heim!
Early
Early in 1941 I was summoned to the London headquarters of the organisation subsequently
known as Special Operations Executive, and known as special OPerations Executive, and
interrogated by Lt Col E. Schroeter. I joined a
few months later and lea few months later and learned the import of this
hyper-secret body charged with co-ordinating hyper-secret body charged with co-ordinating
European Resistance and supplying its peculiar Europea.
Feeds.
Follow
British, Following evacuation of Dunkirk by the
British, the factories of Eindhoven ually developed a major technique in helping to sabotage the Nazi war machine. The commu-
nications equipment plants had devised nications equipment plants had devised
methods of producing programmed shortife methods of producing programmed short-life
hermionic radio valves and other components on which the German High Command relied.
There was also a clandestine There was also a clandestine plant devoted to
he invention and production of simple gadgets he invention and production of simple gadgets traak vehicles, such as personnel carriers and
tanks. If Dodd's preference for boming Eindlanks. If Dodd's preference for bombings Eind-
oven rather than Hamburg oven rather than Hamburg had the effect of
mashing the former town's communications equipment production, the Germans uns-
doubtedy transferred their orders to manufac ories far less likely to be under surveilnua saboteurs one half as efficient as those of Eind oven. In fact, by 1945, the Dutch Resistance engineers had so much perfected guaranteed
fail-early electronic components that I and others were being offered contracts to go to Holland, to re-establish techniques of standard uipment production. I opted for somewh "Col. Soeie"," in Denmark
"Col. Soejoe"
(Name and address supplied)

In a logic circuit, the designer's intention may be to use a gate in a
way other than that described by its name. A Norgate can be used to Nand inputs and the author contends that the intention of the circuit designer should be indicated

As the cost of servicing electronic equipment rises, manufacturers are paying more attention to improving the
serviceability of their products. There are many ways in which the repair of faulty electronic equipment can be facilitated. Readily accessible circuit boards, good component layout and typical areas where great improvelife easier for the hard-pressed service engineer.
Improvements have also been made in the presentation of technical manuals, but there is still much induced. One area where there is room for improvement is in the presentation of logic diagrams for digital circuits. There are many drawings that one can only follow with a great deal of effort, in-
volving the following sort of mental monologue; "when that's high and that's low then that will be high and that low; no, that will be high. Or low? Let's start again. When that's low". customer's site, speed of repair is allimportant and logic diagrams should do everything possible to show the user exactly what the designer's intention was at every gate in the circuit. Such logic drawings. Look at the example taken from an
engineering manual in Fig. 1. Can you engineering manual in Fig: 1 . Can you
say quickly what conditions are needed say quickly what conditions are needed
to allow a pulse to appear at the output? As it is drawn, it appears that the two X
inputs are Anded and the ENABLE signal is being Ored and POS.X-
COUNT, If you look at the manufacturer's catalogue for the devices you will see that the symbols for the 7400 form. Where has the drawing gone
wrong? clearer by recognizing that when we use
inverted logic in which the low level is the true or asserted state, the logic
symbols do a swap and And gates become Or gates and vice-versa. The logical gates with conventional and inverted logic representation are given
in Fig. 2. If you don't see this at first in Fig. 2. If you don't see this at first write out the truth table for a familiar
device, say a two-input Nand gate: device, say a two-input Nand gate

Now invert the logic by writing a 1 was a 11 to giv
$\begin{array}{lll}\text { A } & \text { B } & \text { o/p } \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}$
which is the truth table of a Nor gate in conventional logic. The convention used is that when we are looking for an assertion of a "low is true" signal we put
a bubble on that input line. The mnemonic for the low signal should

Fig. 1. Conventional logic diagram, in
which gates are used for different pur
which gates are used for different purposes than their symbols indicate.
And

Fig. 2. Conventional symbols and their
either carry a bar over its name or, easier to print, be followed by L. When possible, signals that end on a bubble
should begin on a bubble, Fig redrawn using this intentional symbolism in Fig. 3, where the designer's intention becomes clear. When either X1 or X 2 is low and the ENABLE signal is low then the pulse train POS.COUNT When logic diagrams are drawn out in this way they are more intelligible than when the gates are represented only by the conventional "manufacturer's example. The conventional representa tion of a flip-flop made from two Nand gates has been redrawn using intentional symbolism in Fig. 4. The second drawing makes it clear that the device low input on pin A tat Of course, there are ambiguities in the intentional symbolism. When we want to use a signal both in its high and in its Mnemonics should we represent it?

Fig. 3. Circuit of Fig. 1 drawn in 'intent ional' symbols.

Fig. 4. Flip-flop circuit drawn in the conventional way (top) and in 'intentional
symbols.

Fig. 5. Printer circuit, showing that ambiguities can appear.
represent some positive action. Thus in a computer printer the signal that sets it printing is best called PRINT rather than NOT STANDBY. But what if we want to light signal lamps to show when the printer is printing and when the
printer is in standby? The circuit that might be used is shown in Fig. 5 which breaks the rule that signals that begin on a bubble end on a bubble. Such a situation is unavoidable: all one can do is to make the logic diagram represent
some certain state, for example the printer printing, and draw the desired levels for that state. The naming of signals gives more trouble when we have two equally valid functions represented by the high and low on a
signal line. For example, in an automatic weighing machine we might have a switch to select pounds or kilograms. A high on the line would make it weigh in pounds, a low in kilos. Should
we call the line POUNDS H or KILOS It is really a matter of choice but having made the choice the designer might state in his table of signals that POUNDS L = KILOS L.
There is another small ambiguity in
the representation of set and reset inputs the representation of set and reset inputs
to devices, for example flip-flops. Such devices are typically set and reset by low signals and the inputs are marked with bubbles as a reminder of this fact.
Yet the presence of a reset condition is Yet the presence of a reset condition is
often a rare event, perhaps only at the power-on time. It must be remembered that the bubble is telling the reader that to achieve reset or set there must be a low going signal, not that he normally expects to find a low there.
that the same physical device, say a 7400 quad Nand gate may appear in two different shapes on the same drawing and thus add to confusion. But
it is inescapable that in many it is inescapable that in many logic
circuits devices described as Nand gates are being used to Or low signals and Nor gates are being used to And low signals. In summary any digital diagram that seeks to show more than
the connexions between circuit ments may well involve some inconsistencies. However more sense is better than less sense and adoption of the above guidelines does make logic diagrams more understandable and allows
the troubleshooter to check logic levels with his oscilloscope quickly.

Simple pick-up arm design

continued from page 41

The amount of bias to be applied is best determined using a test record which provides a stereo signal having equal high
modulation on each channel. If this signal is reproduced through amplifiers capable of carrying large amplitudes without distortion and the resulting waveforms displayed on a dual-trace oscillocope, the
two outputs may be simultaneously two outputs may be simultaneously
inspected. The correct amount of bias is then established by varying the inclination of the vertical pivot until the two output waveforms are equally free of distortion. In practice, there will be a range of adjustment over which there is no discernible
change in waveform shape. It is therefore necessary to find two positions of the block at which the onset of distortion can be seen, first in one channel and then in the other. Having located these points, the
best setting is one midway between them. best setting is one midway between them.
The two photographed versions were tested for arm resonances using the B \& K test record QR2010, band 15. The 1.f. arm resonance for the first arm, Fig. (a), is cerinimum energy from the record near 7 Hz and it is clear of the lower recorded modulation limit of $20 \mathrm{~Hz} z^{\star}$. The resonance at 7 Hz is from the compliance of the stylus antilever with pickup and arm mas damping as part of the cantilever suspet sion. The peak of 10 dB was 2 to 3 dB bette than two commercial arms measured, and have recently measured an arm with 20 dB peak at 10 Hz .
As this 7 Hz 10 dB resonance can affec er and playing weight, as well as addin intermodulation to tones in the audio

band, the resonance can also make the problem of groove jumping from vibrations greater, especially walking and traf-
fic. Modifications were considered but as fic. Modifications were considered but as
other arm resonances can occur in the audio band a 20 Hz to 20 kHz sweep was made, Fig. (b). Similar tests were made on the second arm, Figs (c) and (d). Close inspection of the first arm showed
oscillation about the horizontal pivot, with oscillation about the horizontal pivot, with
the two ends as antinodes. I had hoped that moving the horizontal pivot to a $2 / 3: 1 / 3$ position instead of half way would reduce the oscillation and result in nodes at both the pickup and pivot. The
second arm, built on this basis, did not show an improvement as far as the main arm resonance is concerned; however the small resonance at 33 Hz disappeared. Although it is hoped to halve the 7 Hz resonance on the mk 3 arm, some increase
in output toward the 20 Hz end can be justified as the IEC recording/playback characteristic specifies a 3 dB reduction in amplitude at 20 Hz . A slight up-turn from arm resonance could therefore help to keep
overall response flat to 20 Hz . overall response flat to 20 Hz .
\star As shown by Record warps and system playback per-
formance, by Happ \& Kariov, AES Convention 1973.

Spend Less
LP-1 Logic Probe

The L
pulse
maxin
This
Thexp
lab or
high-s
has
even
trans
lave
deteLPe-1 has a minimum detachable maximum input frequency of 10 MHz . his 100 K oum requen is an hexpensive workhorse for any shop,
abo ffield sevice toon kit. It detects
abs. ligh-speed pulse trains or ore-shot events and stores pulse or leve
ransistions, replacing separat ransistions, replacing sep
level detectors, pulse and pulse memory devices

Test More

LP-3 Logic Probe extra high speed features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and onitars pulse trains tosover 50 MHz . of a high-quality memory scope
LP-3 captures one shot or or low-LP-3 captures one shot or low-
rep-events all-but-imoossible to
detect any other way new idea from C.S.C.
DP. 1 registers the polarity of you the essential capabilities

£49.00*

The New Pulser DP-1 The Digital Pulser: another
new idea from C.S.C. The any pin, pad or component
and then, when you touch
the 'PULSE' button, delivers
 other way. Or if you hold the
button down for more than a
second, the DP.-1 shoots out second, ine DP. 1 shoots out
pulle atter pulte a 1000 Hz .
The single LED blinks for each sing The single LED Dlinks for each single
pulse, or glows during a aulse train.
If your circuit is a very fast one, yout can open the clock line and take it through its funclock line and take by it
single pulse rate or at 100 per single pulse rate or at 100 per
second. Clever! And at a very
reasonable price.
$£ 51.00$ *

 Unit 1, Shire Hill Industrial Estat Saffron Walden, Essex CB11 3AO Telephone: Saffron Walden (0799) 2168 Telex: 817477

Satellite broadcasting in the eighties

2 - European satellite projects
by G. J. Phillips, M.A., Ph.D., B.Sc , BBC Research Department

There arel a number of satellite broadcasting projects under discussion in Europe. An outline of present proposals is given here but details may, of course, be modified in the course of development.

European Space Agency L-SAT. This project is for a large satellite, to be launched by Ariane-3 in the first quarter of 1984, to carry transponders for a number of different applications including two for
pre-operational use in satellite broad-pre-operational use in satellite
casting. ${ }^{3}$ Other transponders will permit trials on business-system communications (up-link in 14 to 14.5 GHz band, downlink in 12.5 to 12.75 GHz band) as well as propagation and wide-band data-link
studies in the 30 GHz (up-link) and 20 GHz (down-link) bands. The precise details for the two 12 GHz braodcasting beams are still to be settled but one beam is likely to be elliptical (approximately 1 by 2.4 degrees), carrying channel 24 with left-hand Italian assignments, and the other a circular beam (1.6 degrees wide) which may carry channel 20 or 28 , probably with the opposite polarisation. The intention for the first three years at least is to take ad-
vantage of the fact that either beam can be vantage of the fact that either beam can be
independently steered to cover any European country, so that satellite broad-
casting demonstrations and pre-opera-
tional experience can be obtained on a time-sharing basis. Most of the experiments are likely to take place with the satellite at the 11° West orbit position. operation for extended periods at 31° West and 5° East as may be required to provide pre-operational test transmissions to match plans in the UK, Spain and Scandinavia for operating their own satellite broaddecade. The use of the satellite towards the end of its seven-year life is uncertain but Italy has made a strong bid to use it as a tarting satellite for its service on two

Artist's impression of L-SAT. from British Aerospace, the principal contractor. The BBC has proposed to to te Home Office that after two years' operation in the $19^{\circ} \mathrm{W}$ orbit position the satellite should be moved to
the UK's orbit position of $31^{\circ} \mathrm{W}$ and made available to the BBC for a subscription tv
direct broadcasting experiment direct broadcasting experiment. If,
however, L-SAT has to remain at $19{ }^{\circ} \mathrm{W}$ however, L-SAT has to remain at $19^{\circ} \mathrm{W}$ it
might be possible to change the second transponder to a frequency and polarization suitable for the UK, or to fund
an additional broad cast transponder for UK an additional broadcast transponder for UK
use. Two L-SATS would be built, one to be useld wo a spare.
channels until replaced by a purpose-built operational satellite.
The UK has made the largest single contribution so far to the L-SAT project in terms of money and corresponding
contracts. At least seven other countries are giving support, notably Italy and the Netherlands. British Aerospace has been. selected as principal contractor. The decision in implementing L-SAT will be taken at the end of 1980 following completion of progress. progress.
French and German satellites. France and Germany withdrew their support for L-SAT in 1979 and agreed that they would
co-operate in building two satellites, one for each country, each capable of transmitting on three channels. The satellites themselves would be built by Messersch-mitt-Bolkow-Bohm in Germany in cooperation with Aerospatiale in
they are intended to be launched by the Ariane launcher, which is largely a French development, though carried out within the framework of the ESA. Present plans are working towards a launch of the Ger-
man satellite in December 1983 and the French one in June 1984. The German satellite will operate on channels 6,10 and 14 , and the intention is that two channels
 digital modulation.
NORDSAT project. As indicated earlier he four Nordic countries are in the priv channels in the 1977 plan within a beam whose coverage embraces Norway, Swe-
den Denmark and Finland. NORDSAT den, Denmark and Finland. NORDSAT
is the joint body set up both to exploit this is the joint body set up both to exploit this
beam and to include transmissions for Iceland, Faroes and Greenland, the project East. The intention is to relay the various national television programmes hroughout the whole group of countries For the four major countries eight proandic beam the assignments permit five The participants wish to include sound programmes but are reluctant to forgo one television channel by dedicating one channel for a sound multiplex (as proposed in
Germany). They wish to develop suitable means for adding several sound channels to the television channel to cater for a stereo pair for television extra language channels connected with the television programme, and additional channels for elevision programme. While this is considered feasible, considerable experimenation and international discussion will be eeded before the most practical and economic solution can be achieved, preferably
with a common standard with other European countries at least for the method of sending the main sound component of he television programme. Experiments with OTS have already shown that a digital may be one way of contributing to the needs and, as already mentioned, there is terest in Europe generally in improving ad extending television sound transmis lored is a digital signal in the video wave orm within the line-blanking period (a evelopment of the principle used in the sound-in-syncs system on video links in he UK and for Eurovision) but the system couder for domestic receivers.

Other countries. The only other European ountry that has been reported as actively vestigating satellite broadcasting is Lux mbourg. This would clearly have a sizeDutch and German programmes in the area of good individual (domestic) reception extending some 200 to 300 km round Luxembourg. Transmissions from rench and German satellites from th ould ensure the installation of suitable receivers. Table 1 (last month) shows that hose equipped for the French satellite ould already have the correct polarisation nd half-band for Luxembourg's channels. makes direct broadcasting to any part o he UK impractical in terms of individual reception; even in the extreme south-east
of England a 2 to 3 m diameter aerial would be required for reception, so a commercial of programmes by cable becomes legally and economically acceptable.
Finally, in addition to the US/Canadian CTS experiments mentioned earlier, a demonstration of satellite broadcasting
outside Europe has also been successfully accomplished in Japan with a 100 W transponder in the 12 GHz band. ${ }^{4}$

Current investigations
One serious concern has been possible interference. For example the image frequency or i.f. may correspond to radar or power; and second systems of significan power, and second thoughts may be
needed on the preferred i.f. and whether to have the local oscillator frequency above below the signal frequency. A more difficult problem may be harmonic radiation from microwave ovens since, by the end of ceivers are likely to be in close proximity residential areas. The fifth harmonic ovens nominally on 2.45 GHz may be the main concern and could affect reception in the upper half of the 11.7 to 12.5 GH chanisms mentioned have been studied heoretically but, as in many interferenc problems, practical experience will be necessary to see whether the assumptions re careful design of the receiving system wil known levels of signals from potential interfering sources.
Satellite television signals are required "energy dispersal" signal such as a $25-\mathrm{Hz}$ riangular (symmetrical) sawtooth ponding to 600 kHz peak-to-peak devia tion. The dispersal waveform helps in ontrolling interference to terrestia ystems carrying multichannel telephony nd operating in the same band. Its remo dditional clamp circuits to avoid picture licker. The current satellite broadcasting standard for 625 -line signals calls for CCIR pre-emphasis, a.c. coupling and the polarmicrowave links and satellite point-topoint vision links, but the f.m. deviation is bout 14 MHz - a value higher than errestial link practice but below present satellite link video-deviation standard video pre-emphasis curve) may be revised to meet any difficulty in applying them to receivers in the home, although presen pinion is that they are already close to the optimum
For sound transmission it has been proposed for the French and German satel
ites that, besides an analogue sub-carrie 5.5 MHz for the main sound signal, seond analogue subcarrier at 5.746 MH should be used, either for a second lanignal. To ensure adequate sound quality here are proposals that each subcarrie should deviate the main carrier as much a

WIRELESS WOPLD NOVEMBER 1980
5.6MHz peak-to-peak and that the f.m. sound deviation should be increased above the present $\pm 50 \mathrm{kHz}$ value to $\pm 65 \mathrm{kHz}$ or neers are concerned about the requirements for i.f. group delay accuracy, video linearity and the careful filtering of the video band that are called for in the domestic receiver to prevent any noticeable de-
gradation (by patterning etc.) of the picture by the presence of the two analogue subcarriers at the proposed level. As a result there is a case for considering a digial sound system of some kind - a single digital subcarrier carrying two audio chan-
nels for example - to provide the sound for television from the start of satellite broadcasting. Those preferring this solution feel that, with a lower level of subcarier, problems of sound or picture quality are more easily resolved and that largesure that digital demodulation will be cheap and will avoid analogue-circuit alignment problems.
Some journalists.
Some journalists and enthusiasts have pictured satellites as a means for anyone to grammes from other countries at will, so that when the 1977 plan did not appear to provide for this, scorn or indignation was expressed at the apparent narrow-minded-
ness of the planners. ${ }^{5}$ What must be unness of the planners.
derstood, however, is that there is nowhere near enough frequency spectrum to plan for interference-free direct reception of the 50 or 100 programmes implied. Furthermore there would be political, in widespread international coverage Within the scope of the 1977 plan there is nothing to stop shared programmes or joint productions and pressure from the public should ensure that the broadcasting want. The plan is perhaps open to criticism because it is a compromise which alows a considerable degree of inevitable verspill between adjoining countries erhaps in the next band at 40.5 definition, digital video and maybe stereoscopy) we should use large aperture and make sure that beams are tailored to fit each country or part of a country more
precisely. This in turn would reduce inprecisely. This in turn would reduce in use of the spectrum, and give more channels for each country

Acknowledgement. The author wishes to hank the Director of Engineering of the

References

. Herdan, B. L. European multipurpose tele paper subumitted to AIAA 8 th Communication aper submitted to AIAA 8th Communication 4. Ishida 4. Ishida et al. Present situation of Japanese
satellite broadcasting for experimental pul satellite broadcasting for experimental pur-
poses. IEEEE Trans. BC25 No. 4, p. 105, De-
cemer See for exa
May for example editorial in Nature Vol. 267
Ma7.

Coherent audio filters for c.w.reception

Novel filter helps separate Morse signals from interference

The problem of extracting
information from a noisy environment has been with us ever since wireless years many noise began, and over the have been invented. Today the radio astronomer separates 'informative noise' from a background which may exceed it by 30 dB or more. The author discusses the problem as Morse-code signalling, and introdu a novel type of filter which uses coherent addition to help separate steady-state signals from natural. It uses the tapped principle to provide a non-ringing filter which, as well as lifting the signal from its environment, also ha steep sides.

If all the radio amateurs in the world using the h.f. band could be heard together, one operator's share would be is remote but, nevertheless the packing density is a severe and ever growing problem, particularly since the most noise or buried in the 'fourth layer' of interference.
It has often been said that c.w., as it is misnamed, is a dying art. Most pro-
fessional communication is now carried out by machine systems which are faster and more reliable, though they seldom approach the Shannon ideal as closely as the Morse code: the cost of
reliability seems to be very expensive in rellabdwidth Ths the very expensive in Morse alive, given long ago, still holds ${ }^{1}$ The possession of a large body of radio operators is an important national asser, as it was to us during the last world war. In times of emergency, when
sophisticated means may fail, the human operator can still carry on some sort of communication with the absolute minimum of gear. One therefore feels justified in continuing to search
for ways of improving c. for ways of improving c.w. com municatio
C.w. communication

In hand operating, selectivity takes place in two stages; in the receiver and atmosphere and the external noise have
done their worst the receiver does its best, and then the operator does a great
deal more. He attunes his brain to the signal and its particular rhythm the uses his knowledge of the redundancy of the language and maybe his knowledge of the operator at the other end of the circuit. This subjective selectivity can be greatly helped by converting the receiver audio output to a stereo image, needs to be alert to the signal environment ${ }^{2}$. The operator is quite as import ant as the machine and there is plenty of scope yet for improving the coupling the following work is largely on the side of the machine.

Filters and noise
Noise in the present context includes
white and transient white and tignals. The author was encouraged to undertake the present investigation after moving to a location abounding in 11 kV power distribution lines, which often produce enough
somewhat 'coloured' noise to bury any but the most resolute signals. The first attempt was a highly selective filter of conventional type, but this was quite useless. The noise particles

Fig. 1. Illustrating coherence. The vector Srepresents the signal whilst the noise is The area of the circles represents the power in the signal and the noise. Addition of N signal vectors in phase increases the signal power N^{2} times. The noise can only be added as power, so N a signal / noise power gain of N.
whilst the weak signals, already modulated by noise in the receiver actually lost power because they now had a wider spectrum. It became clear the widest passband that interfering signals would allow. The transients kicked the narrow-band filter transients into damped oscillations which lasted for at least Q cycles. To prevent this, it
would be essential to use heavily damped, non-ringing circuits, but this would normally require a great number of non-interacting sections to produce a narrow-band result
Some method was sought of securing
coherent build up of the wanted signa coherent build up of the wanted signal
and it seemed that a delay line several cycles long could provide samples at every half-cycle of the wanted audio frequency, which could be added in phase to enhance the signal at the ex-
pense of the incoherent noise, as in Fig 1. Since the phase must vary with frequency, coherence would degenerate as the frequency moved away from the half-cycle value, and a narrow band might more easily be obtained. This

Transversal filters

The tapped delay line, or transversal filter, of Fig. 2 is normally used in the time domain, for generating or recog nizing coded pulse trains or shapes, in, for example, secure communication
systems or high-resolution radar. The systems or high-resolution radar. The
delay line may comprise lumped net works or may be cable or waveguide. In this case it is going to work in the time domain for noise and in the frequency domain for c.w. signals.
tions are necessary. Several sections needed to obtain good coherent advantage and they must have low Q in order to prevent ringing. It turns out that
all-pass sections make a very good filter and with quite low Q rapidly produce narrow passband. Second-order sec tions are required to produce a phase shift of 180° at the mid frequency. meant by the Q of an all-pass filter. In a bandpass filter, of course, Q conventio nally determines the rate of fall of amplitude away from centre frequency An all-pass filter has uniform transmiswhich the phase changes about the mid
frequency is under control; in a lumped,
$L C$ allpass, this is determined by the L / C ratios in relation to the termin ating impedance, the loaded Q of the network. In dealing with filters it is
more convenient to use the damping factor, m, which is the inverse of Q.

Design
In a T-filter of N stages, the adder sums $\mathrm{N}+1$ samples in progressive phase. It i quite easy to reduce the sum to a com

Fig. 2 Transversal filter. The tapped outputs along the delay line are added in alternate phases. At the section
mid-frequency where $\phi=180^{\circ}$ mid-frequency where $\phi=180^{\circ}$ all this phase position coherence declines, and a bandpass filter results.

Fig. 3 Design charts for the filters. (a) the basic response in terms of phase per
section. (b) conversion of response to frequency scale in terms of damping factor m.
pact formula (see Appendix). For de sign, since one is working in phase raner than frequency, the first step is to produce a_generalized chart of outpu values of N, as shown in fig various second step is a chart, seen in Fig. 3 (b) to convert these responses to frequency scale in terms of the damping factor Thus m can be chosen to control band width. The responses are characterized by
steep sides to the passband, followed by sidelobes, as in a conventional m derived filter or a linear aerial array. These sidelobes are too large for a noisy
signal envirorment and various means signal environment, and various means
are discussed later for reducing them.
Theory of performance
When a resonant wave enters the filter, each tap in turn delivers one half cycle
of oscillation and the output builds up in $N-1$ steps to $N+1$ times the input amplitude; it decays likewise when the
signal stops, as in Fig signal stops, as in Fig. 4. Of course, this makes the signal sound a little 'woofy'
as would a conventional filter, but the rise is linear and quick. Up to eight stages have been used without the effect becoming too unpleasant. At the resonant audio frequency used this
slope represents a small fraction of a typical morse dot.
A puilse may in general be treated as a step function or a combination of two or more. Analytically, the output of an
ideal allpass to an ideal step is rather alarming - a sharp spike where the components of its frequency spectrum come into phase, followed by a broad pulse representing the intermediate The filter sections not a real situation. infinite frequency. The pulses zero or ped and tailed naturally in propagation through space and through the receiver. What the filter receives is a single, rounded pulse, maybe with some over-
swing. This propagates down the with very little change if the damping is high and the result is no coherence, but a kind of oscillation lasting $N+1$ half cycles. Thus, a c.w. signal is extended in amplitude whilst a transient is extended improvement due to conerence of the signal. Similarly, band-limited white noise delivers samples belonging to different epochs, and again there is no coherence.

Filter sections

The use of active networks brings several advantages apart from the Modern integrated-circuit amplifiers can provide filter sections with high input and very low output impedances. Thus, there are no interactions between
sections; they are unilateral, and reflections cannot run up and down the chain, as they can in passive filters, to produce long-delay echoes on transients. The
damping required for frequency response is automatically incorporated in each section of an active filter.

Fig. 4 Response of the T-filter to (a) resonant a.c. signal and (b) band-limited tep function. The signal is extended mplitude and the transient in time.

Fig. 5 Two active, all-pass circuits which Fig. 5 Two active, all-pass circuits which factor. The Holt and Gray circuit (a) looks more complex but is easier to implement, since circuit (b) requires special R-values, plifier to recover unity

Two active circuits are known which provide complete freedom of choice of damping coefficient ${ }^{3}$, and their basic
forms are shown in Fig 5. In the Holt and Gray circuit, A is the main arm, controlling the mid-frequency. Arm B has twice the admittance value of $\operatorname{arm} \mathrm{A}$ and provides a cancellation in the arm C with admittances $m A$ determines the damping factor. Resistors R_{1} and R_{2} fix the gain at unity, as is essential for
our T-filter
our T-filter.
The most critical gain control pair Because of the

WIRELESS WORLD NOVEMBER 1980 positive feedback arm B , the circuit can
become unstable if R_{2} exceeds R_{1} by more than a few percent, and oscillatio may occur at about 10 kHz , wher round to 360° too soon. Arm B is next in order of importance and wiil upset the gain and phase response if too far out of adjustment. Nevertheless, using 2 $\%$ capacitors, man

Fig. 6 All-pass section with $f_{o}=725 \mathrm{~Hz}$ and mO.94. All resistors except the 680 k are of 2% tolerance and all capacitors except the bypass and the 330 pF are $21 / 2 \%$ polystyrene. The actual vale of R_{1},
and R_{2} is not important but they should be a well matched pair.

Fig. 7 Complete four-stage T-filter with input sidelobe filter, using allpass sections as in Fig. 6. Apart from the line sections and the adder, no close tolerance components are needed. Note the bias arrangements for the delay line

> and the input titer. The bias from the delay line.

The in of rircit of Fig. 5(b) looks simpler eeding parallel pair resistor values, able resistor and therefore much trouble in setting up. Also its gain $1 /\left(1+m^{2}\right)$ which must be brought up to unity with a second amplifier.
The centre frequency of the Holt and
Gray filter chosen has been set at 725 Hz . This is a comfortable listening frequency and is also in the most selecive region of the hearing mechanism. in addition, the $C R$ product in the and since the E-series component values are approximately logarithmic, other pairs can be found for various m-values. Figure 6 shows the detailed circuit.
Sidelobe reduction As noted above, the sidelobe level, about -12 dB , is too high. Some 'leak' of he outside world is useful, but it must not let in too much of the noise spec-
trum, or overload signals; 30 dB is a desirable target. Various schemes have been considered, such as the use of an over-riding bandpass filter or mixed m-values along the chain. Another is to tapered distribution by weighting the taps to the adder. The first two only give about -20 dB , the taper about -24 dB . A taper much used is the familiar cosine-on-pedestal and together with a quite low-Q input bandpass filter can be made
to give -30 dB sidelobes. A Tchebysheff taper could no doubt be made but would require very close tolerances to give the -30 dB , but the input filter has another advantage in that it removes much of
the transient energy and thereby improves performance. So the head
filter has been used as part of the com plete design. (Note that the T-filter passes on in some way all the energy which enters whist the more conven passband).

Four-stage linear-array model Figure 7 gives details of a four-stage shown in Fig. 6. A feature is that the operational amplifiers are biassed up to $1 / 2 V_{\mathrm{s}}$, so that a single, earthed power supply can be used. Type 741 amplifiers are used throughou, other types such sating capacitor. The input bandpass filter is a well known type in which the bandwidth is constant ($B=1 / \pi C R_{3}$) whilst it can be tor R_{2}. The resonant frequency is given by $1 /\left(2 \pi \mathrm{C} \sqrt{R_{12} R_{3}}\right)$ where R_{1}, is the parallel value of R_{1} and R_{2}. The gain at resonance is $R_{3} / 2 R_{1}$. It should be tuned o peak at 725 Hz or to balance the two for this stage clamps the non inverting input to $1 / 2 V_{\text {. }}$. The delay line uses sections as detailed in Fig. 6, the main properties of adder tap is taken from i . adder tap is taken from each input and at the first input, and the amplifiers are good enough to hold this closely all down the chain, though the models on the 747 chip (two 741 in one unit) and each board was provided with one bias and blocking capacitor. The latter should be 1μ F; this already shifts the phase a few degrees and if any less is move.
To test the allpass sections it is

 . . 1
 1 : : . ,
necessary to check that the output
terminals (pin 6) are at about $1 / 2 V_{s}$, and that the phase shift per section is 180° at 725 Hz . The latter test can be made by connecting both input and output taps the adder; the output of the adder
should zero at the 180° frequency. If these tests are satisfied then all is prob an oscilloscope to test for self oscilla tion.
The adder is conventional, and takes its bias from the filter chain. The gain is unity for each input but, since there are
five, the a.c. output will be five times five, the a.c. output will be five times
that of the input to the main filter, so this is the overload point of the system. With a supply of 18 volts to the amplifiers, the system will handle sufficient level for headphone use. If the be provided with bias. The output of the adder will drive a high-impedance headset direct, but for more general use, an output stage has been added, based on the LM380, which
will drive any headphones, or a small speaker of almost any impedance. Its input is tapped down to give an overall gain of about 2 or 3. Input blocking is necessary and the 1000 pr shun
tection against strong r.f. fields.

$$
\begin{aligned}
& \text { tection against strong r.f. fields. } \\
& \text { The LM380 is internally pr }
\end{aligned}
$$

against output short circuits, but if less than 12 volts supply is used it may lock out and play possum. It is a lively megahertz bandwidth amplifier, and
both the $0.47 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ decou plings are essential: if it does oscillate it may draw enough current to do damage. The main earth and heatsink on pins $3,4,5$ and $10,11,12$ should connect at least two square inches of
circuit board copper, and for speaker use extra heatsink should be added.

Performance

The overall frequency response (Fig. 8)
is characterised by nulls at about 500 is characterised by nulls at about 500 and 1000 Hz , i.e. about $2 \frac{1}{2}$ bandwidths apart. (if these are not correct, check
the adder and the overall flat frequency response of the delay line). With closetolerance components these notches may be 40 dB or more below peak level, and one can, in fact, tune out a c.w.
signal and listen to its spectrum puffig on either side of the notch. Also the transient rejection is sufficient to reduce the apparent strength of signals with a bad spectrum. However, strong, the peak frequency and reducing this effect led to further development.

Cosine-on-pedestal mode The natural frequency of a second-order filter, at which the transports of the transients abound, is $\omega_{0} \sqrt{1-m^{2} / 4}$. With $m=1$ as in the model above, this quite
close to ω_{0}. and the obvious step is to move toward critical damping with m approaching 2 and thus push the noise energy towards zero frequency. How-

Fig. 9 Basic delay line sections and adder or an eight-stage cosine-on-edestal model. The 2 nd order section is replaced equivalent $m=2$ and the adder redesigned for weighted addition and
division. division

ever, more sections are then needed to retain the 200 Hz bandwidth, which increases cost but gives extra coherent
gain. A good arrangement would be six stages with m about 1.7 , but the cosine-on-pedestal with its low sidelobes was attractive and this model was made. For the taper distribution the shape critical, and $1+2 \cos x$ is a good shape But, as with the aerial, the cost of sidelobe reduction is an increased bandwidth and correspondingly reduced gain. Eight stages with $m=2$ gives a
200 Hz bandwidth and a gain of about 6 . The essential differences from the previous design are shown in Fig. 9. One advantage of using $m=2$ is that a second-order filter section can be made
using two first-order networks in using two first-order networks in a
much simpler circuit. This doubles the number of amplifiers but the cost is about the same, since an 8 -pin 741 now

costs no more than two polystyrene

 capacitors.The taper distribution is arranged by varying the resistors feeding the adder be carried out addition cannot easily input, two adders are needed, one for each phase, with a third to bring them together. The first pair are also
arranged to divide as well as add, to arranged os signal level, by using low value feedback resistors. (The gain is the sum of the eight ordinates of the taper curve).
The fr
The frequency response is shown in Fig. 10. In use this filter is noticeably
better than the'four-stage model, particularly in noise performance. The ability to perceive the signal environment when necessary may be arranged
by fitting a switch to cut out the input by fitting a switch to cut out the input
bandpass filter. In all these filters it is advisable to protect against strong r.f.

WIRELESS WORLD NOVEMBER 198 fields by screening and filtering both input and output.

Further outlook
It may be considered better to try to apply this filter system earlier in the receiver becomes overloaded by extraneous signals or before the detector has added its contribution of trouble. To do it at i.f. would require a large number of high-Q sections, probably quartz, to should be possible however, at an i.f. of say 50 kHz , to use analogue shift registers to give the required delays. However, the devices are expensive, and one would need intervals.
Against this it may be noted that most good receivers have a " $C W$ " filter of about 600 Hz bandwidth in their i.f. amplifier which can deal with much of the overload problem. Also, with recent
developments in high linearity detectors and modulators, there is now a better argument in favour of audio filtering ${ }^{4}$.
${ }^{*}$ In regard to transient performance, the equivalent audio value.
Addendum
Measurements of transient performance confirmed the pulse response of Fig. 4, though with some irregularity due to the small overswings 'aliasing' into the next epoch. However, the 3 kHz
band-limited white-noise behaviour disappointing; it seemed that the residual noise energy in the sidelobes doubled the effective noise bandwidth of the narrow passband.
This led to the idea of using low-Q resonant filters instead of allpass sec-
tions. Since this paper was prepared such filters have been made, using sections like the bandpass filter shown in Fig. 7, with a Q of unity. (No tap was would produce a wideband signal level of $1 / N$). The expected noise improvement was
obtained, and the shape factor was obtained, and the shape factor was

Fig. 10 Frequency response of the
Fig. 10 Frequency response of the
eight-stage cosine-on-pedestal model.
but the sides pull down much faster than those of a single-stage filter of the same 3 dB bandwidth. The circuits are much simpler and LM324 amplifier chip. Also there is no need for close-tolerance components or critical stage-gain control, though the overall gain should not be much greater than unity, or the transients will grow. great advantage, since the phase rate is only half of that of an a.p.f. section, and more stages are required for the same selectivity. The optimum arrangement $N=6, Q=1.25$, or better $N=8, Q=1.0$

Appendix

For the linear filter:
sum of output taps $=\underset{r=0}{N}(-1)^{r} e^{-j r}$.

This is a geometrical series with a progres-
sion ratio $\left(-e^{-i \phi}\right)$ and using the g.p. sum sion ratio ($-e^{-i \phi}$) and, using the g.p. sum
formula, with Euler's equivalence formula, with Euler's equivalence
$e^{j \times}=\cos x-j \sin x$, and algebraic and trigonometric manipulation, it can be reduced to

When $\phi=180^{\circ}$, this is indeterminate, but by taking limits the sum is found to be $(N+1)$.

Zeros occur when $\phi=\frac{k \pi}{N+1}$
$k=1,3,5 . \ldots . . . N$ even
$=0.2 .4 \ldots \ldots$ odd.
The 3dB bandwidth $\phi \approx \frac{1.4 m}{N+1}$ (empirical)

For the cosine-on-pedestal
$(1+K \cos x)$ with $x=0$ to π over series.
$\operatorname{SUM}=\sum_{r=0}^{N(-1) r e-e^{-r i r}(1+K \cos r \pi / N)}$
Reduction proceeds as before, but is tedious, giving

SUM $=+\frac{K}{2} \frac{\substack{\cos \\ \sin [(\bar{N}+1) \phi / 2-\pi / 2 N}}{\cos (\phi / 2-\pi / 2 N)}$

$K \frac{\cos _{\sin }[(N+1) \phi / 2+\pi / 2 N]}{(\sin)}$
$\frac{\cos (\phi / 2+\pi / 2 N)}{}$

Party electronics

Over a quarter of a million pounds was donated to the Conservative Party and its supporting organizations in the year $1979 / 80$ by companies
prominent in electronics according to prominent in electronics, according to a Labour
Party information sheet. Among the largest Party information sheet. Among the largest
donations in all the companies listed were thos of GEC ($£ 50,000)$, Lucas ($£ 20,000)$, Plessey ($£ 20,000)$) Smaller contributions included $£ 13,700$ from BICC and a variety of sums below this from
Chloride, Chub, Comet Decca, EMI, Morgan Chloride, Chubb, Comet, Decca, EME, Morgan
Crucible, Smiths Industries and Telefusion. Crucible, Smiths Industries and Yelefusion.
The Labour Party document comments that
the total donations made directly to the Tory the total donations made directly to the Tory
Party were 104% up on those for the previous Party were 104% up on those for the previous
year, and that the "obvious reason" for this yassive increase was that the General Election of May 1979 inspired a larger number of companies than before to dig deep into their
resources in order to support the Conservative cause.

Wireless World index and

 bindingAs announced last month, the index for now available, price 75 p including now avalable, price 75 p including
postage, from our General Sales Department.
Our publishers also offer a service of
binding volumes of complete with the appropriate index. If you wish to use this service send your copies to Press Binders Ltd, 4-4a Iliffe
Yard, Crampton Street, WWalworth London SE17 with your name and address enclosed. Confirm your order to the General Sales Department, IPC ElectricalElectronic Press Ltd, Room 205,
Quadrant House, Sutton, Surrey SM2 5AS, and with your lecter send a remittance of $£ 6.90$ for each volume (this
price includes the index). Please allow up to ten weeks for delivery.
In both cases cheques should be made In both cases cheques should be mad
payable to IPC Business Press Ltd.

Analytically, the method given f a.p.f. sections leads to hyperbolic func tions. but for a hand computer one can use $\sum=z\left(z^{\mathrm{n}}-1\right) /(\mathrm{z}-1)$ where $1 / \mathrm{z}=1$
$+\mathrm{j} O(x-1 / x)$ and $x=\omega / \omega_{0}$, using the $+\mathrm{jQ}(x-1 / x)$ and $x=\omega / \omega_{0}$, using the
rectangular/polar conversion for the complex z operations.

References 1 Editorial; QST August 1964

2 Charman. F. and Harris. R. "Subjective selectivity and stereocode" Radio Communication, Sept 1975 .
3 Holt and Gray, Proc.
3 Holt and Gray. Proc. E E Dec. 1967 ${ }_{4}^{\text {p. T T Tng. }}$. D. A. BSc PhD. "Audio filters as an 4 Tong. D. A. BSc PhD. "Audio filters as an
aid to reception". Radio Communication,
Feb. 1978 .
or

1 .

, 제 1

! !

An acoustically small loudspeaker

2 - Construction of speaker enclosures and active crossovers
by R.I. Harcourt B.Sc., M.I.E.E.

Abstract

The bass enclosure uses a Dalesford D30iving a 3 dB point of 100 Hz and a Q of 0.7 (measured values). The KEF B110, which is a rather similar drive unit, could also be used, but has not been tried. The encloorder of preference hardwood, plywood and chipboard) to ensure a low level of unwanted sound. The author used chipboard and, using the method outlined in part 1, was unable to measure any panel through the walls owing to their low levels (at least 30 dB down). Dimensions are shown in Fig. 6. The bracing member is used to eliminate one of the two resonances arising from the square dimension, but nance of the drive unit which coupled to the box at 320 Hz , by bracing the magnet. The member is deliberately made slightly larger than the available space so that when the front panel is fitted the drive unit and rear panel are stressed. The enclosure is filled with 4 oz long-fibre wool.

Sub-woofer

The sub-woofer required for adequate bass extension (below 100 Hz) has a fourthorder, band-pass characteristic arising from the second-order, high-pass function of the closed-box enclosure system and a
second-order boost filter. The 3dB frequency of the sub-woofer enclosure is made the same as that of the 5 in bass unit, which is 100 Hz . For analysis, the network functions for the band-pass sub-woofer and for the bass enclosure system were to determine the Q and gain required from the components for a satisfactory 3dB point and low ripple. Normal analytical techniques were found inadequate for the
case of the bi-quartic function, and the case of the bi-quartic function, and the citly solved using a home computer. These functions are shown in the Appendix. The ideal Q for the enclosures was found to be 0.5 , but this low figure was not The figure of 0.7 was taken for the Q and the method of Small ${ }^{7}$ was used for the enclosure design. The higher Q implies some ripple in the response, but the computer prediction is that this ripple amounts particularly since it is at 113 Hz , where room eigentones are likely to give rise to much larger ripples. The frequency res-
ponse predictions are shown in Fig. 7. The design procedure for the subbass unit, but using the Son-Audax WFR 15S. The theoretical Q for the enclosure system was 0.7 : however, when the enclo1 , and stuffing the the Q was measured as fibre wool did not significantly reduce it. The effect of the higher Q is to introduce about 3 AB of ripple into the response. To Q ower the Q, the old technique of feedback tance of the amplifier is made negative by the introduction of positive feedback, then part of the voice-coil resistance is effectvely cancelled, giving a lower Q. A theoFigure 8 shows the circuit of this arrange ment for the case of the Crimson Elektrik Ω E608 amplifier module. The 47k nega-tive-feedback resistor R_{7} is part of the CE608 module, and the module must be
modified in the following manner. Remove $\mathrm{R}_{6}(1.5 \mathrm{k})$ and $\mathrm{C}_{4}(100 \mu \mathrm{~F}, 10 \mathrm{~V})$ from the CE608 board. Replace R_{6} by a 1 k 2 resisor. Take a screened lead from R_{6} to the $100 \mu \mathrm{~F}, 10 \mathrm{~V}$ capacitor on the filter board. The 1N4148 back-to-back diodes are an can otherwise destroy the amplifier when it is used in this manner.
The summing amplifier, which combines the two channels, and the secondorder filter circuits are also shown in Fig.
8. The filter is a conventional Sallen and Key type with an f_{0} of 28 Hz and a Q of 1 . The summing amplifier provides the gain necessity for the bass boost of the belowesonance enclosure. Two 27 k resistors combine the left and right bass channels
within the metalwork housing the active crossovers and amplifiers. A screened lead takes this signal to the summing amplifier, which can be remotely sited. (In the uthor's installation, the two metalwork fiers are shelf mounted with the loudspeakers remote.) The screened lead takes the combined bass signal to the sub-woofe enclosure, where the filter p.c.b., CE608 amplifier and power supply are sited, en-
kit. The WFRISS unit used for the sub woofer has a high efficiency, which some extent offsets the amount of bassboost necessary for the below-resonance oudspeakers at the bass end, whether sub resonant or not, is the cone excursion capa-
city, and not the power handling capacity
as it sometimes supposed. Since the maximum s.p.1. available from a closed-box enclosure is determined by the area of the cone and the cone excursion, it is possible to increase the s.p.l. by increasing the
number of drive units. The WFR15S has a cone-excursion-limited maximum s.p.l. of 86 dB at 35 Hz , the worst case considered here, since this limit increases at $12 \mathrm{~dB} / \mathrm{cc}$ tave. This may be compared with 88 dB s.p.1. available from two KEF B139 units
in a closed box, and with approximately 95 dB s.p.l. from the full symphony orchestra. The author has considered using two WFR15S units in two closed-box enclosures placed adjacently, which would at 35 Hz , but space considerations led to the use of a single unit placed in a corner of the room, which gives a 9 dB gain when compared with the free-space radiation figure, at no extra cost.

Clay enclosure
The mid-high frequency enclosure is made of modelling clay (Das) which has the property of setting rock hard without the use of firing. Plastic-wrapped 980 g packs are available, and four packs were used for
a pair of enclosures. However, the sides were found to be rather thin and six packs would be preferable. The clay is rolled flat with a rolling pin to the required dimensions and moulded round a cylinder of 20 cm high and 40 cm circumference. Cut a 60 mm square hole in the chicken wire for he Jordan 50 mm unit, and an appropriate round hole for the tweeter used. (The author has used both the Son-Audax version, the HD 9×8 D25) and the ScanSpeak 2008 pictured in Fig. 4.) The clay can be worked by those with no previous experience in the art, provided that it is quired for smoothing down and for jointing. Avoid too much water
Use two packs of Das for the cylinder and one for the base and dome. There will be some left over for patching holes and for surrounding the drive units with a fillet to
provide a smooth profile. The wet clay will oin to dry clay successfully when a little moisture is used, so it is not essential to obtain a perfect finish first time. The base and dome are made by rolling out one pack of Das to about 50 cm square and cutting dome by placing the cylinder vertically in a

Fig. 6. Construction of the bass and sub-woofer enclosures.
mixing bowl and moulding the circle into the bowl, joining the edges with the end of the cylinder. The moulding is then placed upon the other circle and joined to this,
forming the base. It may be found deforming the base. It may be found de-
sirable to support the dome from the inside of the enclosure while it is drying to prevent sag. The clay takes about two days to set in an airing cupboard, and when set the drive units are fixed using silicone rub-
ber (bath sealant). Holes are drilled for the wires to exit the back of the enclosure. About $40 z$ long-fibre wool is used as filling material, before the units are fixed. The adhesive takes $1-2$ hours to set, and the spare clay (which should be kept in a plas-
tic bag to prevent drying) can be used to form a smooth fillet around the edges of the units to reduce diffraction. For inishing, Declon acoustically transparent foam is formed into a cylinder and has a
circle fixed to the top. circle fixed to the top.
The cylinder of foam
0.5 in and stapled together, and the circle or the top is stapled to the top edge of the cylinder. When this arrangement is turned inside out the join is concealed, and the
seeve can be fitted over the clay enclosure The clay can be sprayed black to match the drive units, and the foam can be sprayed any desired colour, using aerosol paint. The author has experimented with the positioning of the satellite units, and has
found that stereo imaging is best when the units are placed on stands so that the tweeter is the height of the seated listeners' ears, and the units are $0.5-1 \mathrm{~m}$ away from the walls. This requires stands about
470 mm high.

Electronics

The Crimson Elektrik modules for the bass, mid-range and treble units are mounted in two Crimson Elektrik Fig. 8. Summing amplifier and filters for

Fig. 7. Computer-predicted curve (bottom) responses. wishing to make their own cross-
overs are referred to reference 2 where Linkwitz gives the circuit and design formulae. The crossover frequencies are 500 Hz and 4 kHz .
suitu-woofer electronics are housed in a suitable chassis together with a power supply. The author used a Crimson Elektrik metalwork kit and power supply, arranged as shown in Fig. 10. Because
there is a positive feedback loop connected

etry, as shown in Fig. 9. The kits are stacked on top of each other. One contains
a normal two-channel amplifier with power supply, and the stabilized supply
for the active crossover modules. The for the active crossover modules. The
second kit contains four power amplifier modules and the active crossovers. If it is desire to omit the dome tweeters, as recommended by Jordan, then two amplifiers can be omitted also. Full instructions are supplied by Crimson Elektrik for the
construction, but the filter p.c.b. for the

Wreless world november 1980

$*$ Omit tor 2 -way system
Fig. 9. Suggested layout of amplifiers and filters.

Fig. 10. Layout of sub-woofer amplifier and filter
between two p.c.bs with screened cable, it is possible that mains harmonics may give rise to hum. To reduce this, use the thinnest screened cable obtainable, and route he cables well away from the mains trans-
former. The author has found that the screened cables are best positioned by experiment to give the lowest hum.

Listening tests

In each case, the audience was composed of electronics engineers. The first comparison was with the Hi-Fi For Pleasure Compact Monitor, a three-way system made from a kit, with much larger enclosures than those of the A.S.L. There was a large audience of three were unanimous in pre ferring the active system. The most noticele difference was a gain in transien and drums, when using the A.S, pian nd drums, when using the A.S.L. dor BCls . In this case, the audience of two
could just detect a difference, but wer unable to tell which was in use. There was lightly more colouration or 'warmth' in A.S.L. On some materiaut, 00 Hz) of the extension of the active system could be heard. Direct comparison of stereo imaging was not found valuable, since the coited speakers interfered with each other's ound field.
Other considerations than sonic ones passive speaker may be a consideratio though price is not since, considering the cost of amplifiers and speakers, the two ystems are comparable
quipment (amplifier, deck, arm and ca ridge) was used in the tests, in whic nalogue, digital and direct-cut record were played. The author is unable to me sure or explain the slight 500 Hz coloura-
tion, and intends to try the effect of lowering the crossover frequency.

Addresses

Crimson Elektrik: 1(a) Stamford Street, eicester LE1 6NL
onaudax Loudspeakers Ltd: Main distributor is Falcon Acoustics, Tabor House, Norwich Road, Mulbarton, Norwich, Norfolk NR14 8JT Dalesford: A.C. Farnell Ltd, Kenyon Street, Sheffield S1 4BD. E.J. Jordan Ltd: Stonyway, Bovingdon Green, Marlow-on-Thames, Bucks SL7 K.E.F. Electronics Ltd: Tovil, Maidscanspeak: Crimson Elektrik Das is available from larger branches of W.H. Smith

Long-fibre wool can be obtained from Wilmslow Audio, Swan Works, Bank Square, Wilmslow, Cheshire, who also
stock Dalesford, K.E.F. and Jordan drive units Sound Services, 46 Wood Street, Badger Sound Services, 46 Wood Street,
Lytham St. Annes, Lancs FY8 1QG, stock Lytham St. Annes, Lancs FY8
most components, including Crimson most components, possibility of producing the sub-woofer electronics as a kit.

[^3]Appendix: sub-woofer characteristics
A closed box enclosure has network function

$$
\begin{aligned}
& \mathrm{GH} 2\left(s_{\mathrm{n}}\right)=\frac{s_{\mathrm{n}}{ }^{2}}{s_{\mathrm{n}}{ }^{2}+s_{\mathrm{n}} / Q_{\mathrm{o}}+1} \\
& \text { where } s_{\mathrm{n}}=s / \dot{\omega}_{\mathrm{o}} \\
& s=\sigma+\mathrm{j} \omega
\end{aligned}
$$

The second-order, low-pass with gain A is

$$
\operatorname{GL2}\left(s_{\mathrm{n}}\right)=\frac{\mathrm{A}}{s_{\mathrm{n}}^{2} / h^{2}+s_{\mathrm{n}} / h Q_{1}+1}
$$

$$
\text { where } h=\omega_{f} / \omega_{o}
$$

The two functions above in cascade give the fourth-order, bandpass

$$
\operatorname{GB4}\left(s_{\mathrm{n}}\right)=\frac{A s_{\mathrm{n}}{ }^{2}}{\left(s_{\mathrm{n}}{ }^{2}+s_{\mathrm{n}} / Q_{\mathrm{o}}+1\right)\left(s_{\mathrm{n}}{ }^{2} / h^{2}+s_{\mathrm{n}} / h Q_{1}+1\right)}
$$

Summing this with the response of the bass enclosure (1 channel only)

$$
\operatorname{GH} 4\left(s_{\mathrm{n}}\right)=\frac{A s_{\mathrm{n}}{ }^{2}+s_{\mathrm{n}}{ }^{2}\left(s_{\mathrm{n}}{ }^{2} / h^{2}+s_{\mathrm{n}} / h \mathrm{Q}_{1}+1\right)}{\left(s_{\mathrm{n}}{ }^{2}+s_{\mathrm{n}} / Q_{\mathrm{o}}+1\right)\left(s_{\mathrm{n}}{ }^{2} / h^{2}+s_{\mathrm{n}} / h Q_{1}+1\right)}
$$

The magnitude function, which is too long to reproduce here, is then taken and programmed into a home computer. The
result of evaluating this function is that result of evaluating this function is that,
for a filter Q_{1} of 1 , an enclosure Q of 0.7 and an enclosure f_{0} of 100 Hz , the gain required is $A=-8$, the 3 dB -down requency of the system is 33 Hz and ripple is 1.6 dB at 113 Hz . Note that the gain is negative, as is usual with second-order
crossovers, when the drive unit is connected out of phase to achieve this. In the case of this design, the negative gain is achieved by the summing amplifier, and the driver connected in phase.
3 For the D30 found to enclosure volume of and f_{0}. For the WFR15S an enclosure volume of 33 litres gave an f_{0} of 100 Hz , but the Q was too high. To reduce the Q he following expressions are considered from Small.
$Q_{\mathrm{ts}}=Q_{\mathrm{es}} Q_{\mathrm{ms}} /\left(Q_{\mathrm{es}}+Q_{\mathrm{ms}}\right)$
$Q_{\mathrm{es}}=\omega_{\mathrm{s}} C_{\text {mec }}\left(R_{\mathrm{e}}+R_{\mathrm{g}}\right)$
R_{g} is the output resistance of the amplifier and, by making it negative, $Q_{\text {ts }}$ can be reduced to the desired value. The required Q^{\prime} is is given by:

$$
Q_{c} / Q^{\prime}{ }_{t s}^{\prime}=f_{c} / f_{s}
$$

$f_{\mathrm{s}}=31 \mathrm{~Hz}, f_{\mathrm{c}}=100 \mathrm{~Hz}, Q_{\mathrm{c}}=0.7$. Therefore,

$$
Q_{\text {ts }}^{\prime}=0.22
$$

since $Q_{\mathrm{ms}}=4.19, Q_{\text {es }}^{\prime}=0.23$ from eqn. 1 .

We know that with $R_{\mathrm{g}}=0, Q_{\mathrm{es}}=0.46$ and that $R_{e}=7.3$, so from eqn. 2,
and the required R_{g} is -3.7Ω. The amplifier is given a negative resistance by the circuit shown.
By inspection:

$$
R_{\mathrm{g}}=\frac{-R_{1} R_{3} R_{5}}{R_{2} R_{4}}
$$

For the CE608, $R_{1}=47 \mathrm{k}$. Choose $R_{5}=$ $0.1 \Omega, R_{3}=R_{4}=27 \mathrm{k}$. Then $R_{2}=1.2 \mathrm{k}$.

List of symbols

c velocity of sound $345 \mathrm{~m} / \mathrm{s}$
$C_{\text {mec }}$ electrical capacitance representing moving mass
f frequency
f_{c} resonant frequency of closed box system f_{G} free air resonant frequency of drive unit

The author was born in London and lived as a child in Nairobi, Kenya. He attended Ipswich
school, and from there went on to Southampton University, where he obtained an Honours Degree in Electronic Engineering in 1967 Appointed as an Executive Engineer in the Post Office HO, he
spent some time carrying out or ganisation and methods studies, before moving on to the Experimental Packet Switching System (EPSS) for which he helped to
produce a mini-computer-based produce a mini-computer-based
tester. Currently he is with the Me chanization and Building department of Postal Headquarters, where he is developing a traffic recording system for parce sorting
$Q_{\text {es }} Q$ of driver at f_{s} considering electrical ${ }_{Q_{m s}}$ resistances R_{e} and R_{g} only $Q_{\mathrm{ms}} Q$ of driver at f_{s} considering driver Q_{c} total Q of system at f_{c}
$Q_{\text {ts }}$ total Q of driver at f_{s} considering all driver resistances and R_{g} R_{e} d.c. resistance of driver R_{g} output resistance of amplifier s complex frequency variable ($\mathrm{j} \omega=\sigma$) ω_{s} radian resonant frequency of driver in
free air

Personal privacy of engineers
Mr F. W. Sharp of the Inssitution of Electronic
and Radio Engineers writes to us as follows: The suggestion was made in a BBC Radio 4 programme "Reel Evidence" broadcast on the lists of of August 26th, that the membership lists of the chartered engineering institutions pile unauthhorized information about the work of individuals. As far as the IERE is concerned,
this is not so: the Instiution's memberhip list this is not so: the Institution's membershiped, list
is maintained on a strictly is maintained on a strictly confidential basis. By
decision of the IERE Council a "list of members" is now no longer published.

Take a leaf out of our book.

Or better still send for the complete works.

Our main illustration shows just one page from Feedback's new Test Instruments Catalogue: a comprehensive guide to the ten test instruments in the renowned ' 600 Series,' comprising function generator variable phase generators and measunng instrumens, together with another six instruments which also provide he name:

All Feedback test instruments put an emphasis on high
fformance and value for money, are rugged and reliable, and carry an unconditional two-year guarantee. Complete the coupon and this important new book is free for the asking.
Please send me my free copy of the new Feedback Test Instruments Catalogue
Name

> Name

$\frac{\text { Position }}{\text { Company }}$
Company
Address

Conquer the chip.
 Be it a career, hobby or interest, like it or not the Silicon Chi

will revolutionise every human activity over the next ten years.
Knowledge of its operation and its use is vital Knowledge you Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own hom
Learn the technology of the future today in your own home.
MANIER LEGRONGS BY SEEING AND DOING

- Building an oscilloscope. - Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electro

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS. - Complete Home Study library. - Special educational Mini-

MASTER THE REST

- Radio Amateurs Licence. \bullet Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

The facts of the case

Audio gain controls

2 - Obtaining equal gains in the two channels of a stereo pair

by Peter Baxandall, B.Sc. (Eng.), F.I.E.E., F.I.E.R.E., M.A.E.S.

Continuing his survey of gain contro problems and solutions, Peter Baxandall discusses tracking volume controls in stereo amplifiers, concluding with a proposal for an

Stereo gain control tracking Connected with the problem of obtaining a satisfactory scale-shape for the volumeof achieving an accurately equal gain in the two channels at all knob settings. Pre ferably, the channel gains, if adjusted to be equal at one volume control setting, by means of the balance control or otherwise,
should remain within $\pm 1 \mathrm{~dB}$ of equality a all other settings of operational significance. This is quite likely not to be the case if cheap types of carbon-track ganged log. pots. are used.

Fig. 20. Approximation to log. law obtained by changing resistivity of halves of carbon-track pot.

Figure 20 shows the measured gainFigure 20 shows the measured gain-
variation law on one channel of a ver high quality, commercial control unit, having a simple, passive volume-contro circuit, using the above type of pot. The very rough approximation to a logarithmic
(linear- $-\mathrm{in}-\mathrm{dB}$) law is obtained by makin the two parts of the pot. element of different surface resistivities, the resistivity changing suddenly from one value to another at half-rotation of the knob. A the point of change, there is a severalfold
change in slope, which is a quite undesirable feature. Though some quite cheap commercial pots. give a better approxima-
tion to a logarithmic law than that of Fig.

20, there is clearly much to be said for employing a type of gain control circuil
which inherently gives a smooth and which inherently gives a smooth and nearly logarithmic law without needing
pots. with a non-linear resistance law. It pots. with a non-linear resistance law. It
ought to be easier to make ganged linear pots. *with accurate matching between pections than to make ones with non-linear laws and equally good matching, though unfortunately, limited experience in measuring the departure from linearity of
cheap so-called linear carbon-slider pots. has shown that undesirably large errors often occur.
One solution to the problem of obtaining a good scale shape and accurate tracking is, of course, to employ ganged
stud-type volume controls. These should give not more than 2 dB per stud, at the most, and should have a click mechanism to make sure they are never left in an unsatisfactory half-way state between one
stud and the next. Then, provided their internal resistors are accurate and stable, very accurate tracking will be obtained. Careful measurements have been made of the resistance versus knob-position relationship for eight specimens of R.S"
Components $10 \mathrm{k} \Omega$ linear "slide tandem" pots, and Fig. 21 shows the results for three of these. It will be seen that:
(a) none of the specimens has a truly
(b) linear law;
(b) the departure from linearity, though
of somewhat different nature for the hree specimens, is nevertheless of fairly accurately the same shape for this is the case also for the other five specimens;
(c) there are considerable differences between the absolute total resistanc values of the specimens, and, in the case of specimen number 3 par-
icularly, between the two resistance elements in one specimen.
For normal audio control-unit applica tions, minor departures from the nomina volume-control law are unimportant, provided they are equal for the two
channels. Differences in the absolute resistance values for the two elements in a stereo pot. may or may not cause gain mistracking, dependent on the nature of the associated circuit.
Consider first the circuit of Fig. 22(a) which gives a range of gain well suited to most control-unit applications. (The circuits of Figs. 12 and 14 are better suited to microphone-amplifier applications where the higher maximum gain given is advantageous.) It is necessary in practice
to insert a resistor R_{1} in series with the input end of the pot. to limit the maximum value of k obtainable to, say, 0.9 or 0.95 , otherwise - see Fig. 8(a) - the characteristic becomes too steep at the

Fig. 21. Samples of characteristics of dual linear pots.
shown in Fig. 9 , and is not the same as k^{\prime}
in Fig. 22. The reason for introducing k^{\prime} in Fig. 22. The reason for introducing k^{\prime} is that it enables a more straightforward comparison to be made between the
behaviour of the (a) and (b) circuits in Fig. $22-k^{\prime}$ is a measure purely of the kinob position, whereas, as shown in Fig. 9, k involves also the value of the fixed series
resistor. resisto

Fig. 22. In circuit (a) the total resistance of R compared with R , varies the control curve, whereas the circuit at (b) is independent of
track resistance.

The gain of the Fig. 22(a) circuit is given
by:-

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{k^{\prime} R}{\left(1-k^{\prime}\right) R+R_{1}} \\
& =-\frac{k^{\prime}}{1-k^{\prime}+R_{1} / R} \tag{5}
\end{align*}
$$

The gain of the Fig. 22(b) circuit is given
by:$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{k^{\prime}}{1-k^{\prime}-1 / A}$
It will be seen that equations (5) and (6) are of exactly the same form, A being a the amplififier is a phase inverting one. Thus if A is made equal to R / R_{l}, the two circuits will have identical graphs relating
overall gain to knob position. Circuit (b) has an advan
however, in that the control characteristic is quite independent of variations in the absolute resistance R of the pot. element,
whereas in (a) an increase in R requires a whereas in (a) an increase in R requires a
proportionate increase in R_{1} to return to the same control characteristic. Thus, using a pair of circuits of the (b) type in a
er system, differences in the elemen pot., which, as already mentioned, are ound to occur in practice, will not affect the accuracy of tracking between the
channels, whereas in (a) an increasing discrepancy will occur as the gain setting is increased. It has been assumed that the amplifier input impedance in circuit (b) is very high, so that there is no significant
loading on the pot slide loading on the pot. slider.
practice, an economical recipe is required for a phase-inverting amplifier of high input impedance and feedback-stabilized
gain. The simple arrangement Fig. 23(a) is not very good, for to avoid significant loading of the slider, the resistors R_{a} and R_{b} must be made very high in value, which then seriously degrades the noise performance. This problem may be
satisfactorily solved by inserting a unitysatisfactorily solved by inserting a unity-
gain follower between the slider and $\mathrm{R}_{a}, \mathrm{R}_{a}$ and R_{b} now being made of very much lower values. This arrangement is shown in Fig. 23(b).
Amplifier A
Amplifier A in Fig. 23(b) has to handle only quite small voltage excursions, even reach levels of several volts. There is no need to use an op. amp. for A, better economy, with little degradation in performance, resulting if a simple emitter-
follower is used. A satisfactory practical follower is used. A satisfactory practical
design is given in Fig. 24. Over a range of gain adjustment of approximately 30 dB , the departure from the ideal straight-line graph is no more than $\pm 1 \mathrm{~dB}$. The unitygain op. amp. follower at the left has been
included so that the complete circuit presents a high input impedance to the source of $V_{\text {in }}$ at all gain settings - this source may be the tape and radio inputs to a control unit, for example. Without this follower, the input impedance at maxi-
mum gain setting falls to $1.09 \mathrm{k} \Omega$. Because the gain of the Fig. 24 cir independent of the total resistance of the pot. element, being dependent only on the slider tapping ratio, the tracking error between stereo channels can probably be
held within $+1 d B$ limits in production over a 30 dB range of gain, using low-cost carbon pots.
Alternative technique. An alternative
technique, which, like Alternative technique. An alternative in series with the pot. to limit the

Fig. 24. Practical version of Fig. 23(b) is shown at (a), with its control characteristic
at (b) (lower cur shown at (a), with its
at (b) (lower curve).

Fig. 23. Two circuits embodying the Fig 22(b) idea. Circuit (b) uses voltage followe
to avoid need for high-value resistors R_{g} and R_{b}.

WIRELESS WORLD NOVEMBER 1980

means that the curves for the two circuits are exactly the same in size and shape, bu displaced upwards relative to the equation (9) curve by $20 \log 1 /(1-\beta)$ decibels Thus, the real difference in behaviour between the circuits of Figs. 24 and 25 is
that when designed to give identical shapes of control characteristic, the Fig. 25 circuit, at all knob settings, gives a slightl higher gain than does that of Fig. 24.
Passive control using linear pots.
A single linear pot. used as shown in Fig. 1 or Fig. 2 gives a control law. which is quit well known that by shunting a load resistor from the slider to earth, a characteristic approximating more closely to the ideal uniform decibel spacing may
be obtained, though unfortunately only be obtained, though unfortunately only Fig. 26, based on calculations I did while a student in 1942, shows what happens as the loading is varied

Fig. 26. Family of curves obtained from Fig. 26. Family of curves
shunted linear pot. slider.

Very much better results than the above can be obtained with passive circuits using linear pots. if one or more fixed tapping points are provided, and the simplest such scheme is that shown in Fig. 27(a). If the resistors R_{a} and R_{b} are made of very much attenuation with the slider at the tapping position is determined almost entirely by the values of R_{a} and R_{b}, and is virtually unaffected by any non-linearity in the law
of the pot. element itself. There is, of the pot. element itself. There is,
however, a sudden change in slope as the slider passes the tapping point, and a typical characteristic is shown in Fig. typical
By adding a loading resistor between the slider and earth, a much bette
characteristic can be obtained, and it is possible to choose the value of this resistor so that there is no discontinuity in slope as the tapping point is passed. Fig. 28 shows a practical design employing a centre-- tapped linear pot. with the slider output
suitably loaded, together with the characteristic obtained. Over a control range of about 35 dB , the departure from the ideal straight line is not much more
than $\ddagger 1 \mathrm{~dB}$. By having two tapping points on the pot. element - and low-cost slider
pots. can be obtained with this feature the nearly-linear control range can be extended to about 50 dB if required satisfying the most exacting needs.
For instrumentation purposes, the
above technique can be extended much

(a)

(b)

Fig. 27. Tapped linear pot. (a) gives approx.
log. characteristic, shown at (b). With R_{0} log. characteristic, shown at (b). Win
and R_{b} low, gain at mid position is almos. independent of track linearity or resistance.

(a)

Fig. 28. Practical version of Fig. 27.

Uninormy- wound
further, providing attenuators of extremely high precision and stability. An interesting example from a different field occurs in the Wayne Kerr B5009 readings are taken from an approximately 25 cm long "slide-rule", which has a logarithmic scale covering a $16: 1$ ratio. The circuit associated with this device is shown in Fig. 29. The use of a tapped
transformer winding to energize the tappings on the resistance element ensures extreme precision in the ratios of the voltages at these points, since they are determined almost purely by the turn numbers on the transformer. As the slider
is moved down from the top, the attenuation at each tapping position increases by tion at each tapping position increases by
successive factors of 2 , or 6.02 dB . In the absence of the loading resistor on the slider, $V_{\text {out }}$ varies linearly with slider position between tapping points, whereas, for $V_{\text {out }}^{\text {that is required to vary linearly. The }}$ error amounts to approximately 0.5 dB midway between tappings. By adding the right value of loading resistor as shown, this error is reduced to less than $\pm 0.05 \mathrm{~dB}$. characteristic is made almost perfectly

> spaced decibel divisions. The useful range of the model illustrated was about 70 dB .
independent of production variations or provided only that the physical positions o the tappings are accurately maintained With the Fig. 28(a) type of arrangement, effect, but it may be kept small by making the resistance of the resistor-chain connected to the tapping(s) much less than the resistance of the pot. itself. For high-grade audio control-unit controls is considered appropriate, there would seem to be a strong case for using the Fig. 28 arrangement but with two
tappings. By using $+2 \%$ resistors to feed tappings. By using $\pm 2 \%$ resistors to feed
the tappings, excellent stereo tracking should be obtained with a most desirable shape of control characteristic.

BBC log. attenuator

An interesting and very neat solution to the problem of providing a wide-range gain control having uniformly-spaced
decibel scaling was devised in 1946 by C G. Mayo and R. H. Tanner of the BBC Research Department. It was used in a portable microphone amplifier made by the BBC for acoustic measurements ${ }^{5}$, but was unfortunaty
mercially The principle is given in Fig. 30, and Fig. 31 shows the actual construction. These illustrations are taken from reference 5. A is a block of resistive
material, of which the underside is covered by a conductive electrode B. The input is applied between B and another electrode C, the output being taken between B and a slider D. The various series and shunt paths through the resistive material may to the ladder network shown, the output of each successive section of the ladder being a constant fraction of that of the previous section, giving a scaling with uniformly-
naracteristic is maae almost perfectiy

Analogous circuit
Fig. 30. BBC gain control principle at (a) is 'distributed' equivalent to attenuator
network at (b).

It is pointed out that the output im pedance of this type of attenuator does no become low when the attenuation is large, so that it is very important to avoid appre ciable stray-capacitance coupling between
input and output. The output connexion is input and output. The output connexion is screening plate as shown in the photograph.
It has occurred to me that there is no essential need to employ a thick block of resistive material, and that an attenuato
based on the same broad principle could be made using carbon-coated s.r.b.p. shee material of the type commonly used in ordinary carbon pots. To test this idea, a quick experiment was done with the set-up
shown in Fig. 32, and yielded the rather impressive result shown in Fig. 33. The very first graph obtained was somewhat inferior, apparently because of unsatisfactory contact between the steel vice jaw and the carbon coating. This was
overcome by interposing a strip of polished copper foil between the carbon coating and the vice jaw.
Though an attenuator having a very extended range of operation as in Fig. 33 may fulfil some requirements, it is not
ideal for use in control units etc., for the range of control needed in practice covers far less than 100 dB , except that an "off" position coming soon after the position giving 40 or 50 dB attenuation is really desirable. The Fig. 32 type of construction
could readily be modified to provide such a characteristic, by shaping the conductive electrode, or metallic coating, somewhat as shown in Fig. 34. Halving the width of the carbon track, for example, would double the slope of the graph.

Wireless world november 1980 It is relevant to consider the suitability for stereo purposes, i.e. whether sufficienty accurate tracking would be readily obtainable. Since the slope of the attenuation characteristic depends, to a first order at least, on nothing but the width of the
resistive track, it would be important, for stereo use, to adopt a form of construction in which production variations in this width are minimized. The Fig. 34 construction does not appear to be ideal, for it
relies on cutting the edge of the carbon relies on cutting the edge of the carbon
material accurately in relation to the position of the metallized coating. The arrangement shown in Fig. 35 would seem much preferable, since accuracy of cutting is no longer involved and the metallized printing technique with a very high degree of consistericy.
The lower impedances usually used in transistor equipment, compared with oarlier valve equipment, ease the problem
of keeping the input-to-output stray capacitance sufficiently small, but it is still important to adopt a constructional arrangement which aims to minimize such capacitance. Working at $1 \mathrm{k} \Omega$ impedance, with a control giving up to 100 dB attenua-
tion, the stray capacitance must be kept to tion, the stray capacitance must be kept to
less than 0.1 pF . The connexion "rail" on which the slider moves must therefore be positioned away from the carbon surface and screened from this and the input con-
nexion by an earthed screening plate nexion by an earthed screening plate. arrangement is that, because of its symmetry, unwanted slight lateral movements of the slider during its traversal would be expected to have less effect on the attenuation than with the Fig. 34 form of
construction - though it has been found that even with the latter, movements of about 1 mm at right-angles to the direction of traversal produce only a small fraction of 1 dB change in output provided the or 3 mm of its edge.

Other methods of log control and stereo tracking

- Perfect tracking of stereo channel gains at all settings, without the need for precision gain-control circuits, may be obtained
by first producing, from the incoming L and R signals $(L+R)$ and $(L-R)$ signals. If the ($\mathrm{L}+\mathrm{R}$) signal is fed to one half of a ganged gain-control circuit, multiplying it by a factor α, and the ($L-R$) signal is fed circuit, which multiplies it by a factor β, then the sum of the gain-control circuit outputs is given by:
sum $=(\alpha+\beta) L+(\alpha-\beta) R$
(10)
and the difference of their outputs is given .
difference $=(\alpha+\beta) \mathrm{R}+(\alpha-\beta) \mathrm{L} \quad$ (11)
Thus, though the balance as such is perfect, it is obtained at the price of
introducing some cross-talk when α is not

Scale of mm marked lightly
Fig. 32. Experiment using sheet instead of

SLIDER DIISPLACEMENT
AWAV RROM NPUT ELECTRODE (mm)
Fig. 33. Measured result obtained with Fig.
32. arrangement.

Metollized cooting
Fig. 34. Suggested form of control using Fig. 32 principle. Ch
low-gain settings.

quite equal to β. The effects of stereo ence 6 .

- Perfect tracking without the introduction of crosstalk can be produced if a single gain-control circuit is used to for example, by first making the L and R audio signals modulate two different r.f. carrier frequencies, the two amplitudemodulated carriers being fed to the same gain-control circuit and being subsequent circuits. Though this technique could give virtually perfect results, it would not seem to be very attractive economically.
- Various simple gain-control circuits - Various simple gain-control circuits
give a nearly linear relationship between give a nearly linear relationship between
attenuation in decibels and control attenuation in decibels and control sufficient number of such circuits are put in cascade, and the controls are ganged, an approximately linear relationship may be
obtained over any required range. While this technique is not usually very attractive when carried out literally with mechanically-ganged pots., it would
appear to be worth bearing in mind as appear to be worth bearing in mind as a
possible technique for providing electronic gain control with a logarithmic characteristic. The idea is quite old.,
- At the present time the mos satisfactory technique for wide-range exploits the fact that silicon planar transistors follow with high accuracy the relationship:-
(12) $I_{\mathrm{c}}=I_{\mathrm{o}} e^{q V_{\mathrm{be}} / k T}$ where I_{c} is the collector current and $V_{\text {be }}$ is the base-to-emitter volta
quantities are constants.)
quantities are constants.) (ircuits which the gain in decibels is linearly related to the control voltage over a range of about 100 dB , and by using the "log-antilog" or predistortion technique, a performance sufficiently good, with respect to distortion
and signal-to-noise ratio, to justify the use of such circuits in very high-quality audio systems, can be obtained. A very sound and clear treatment is given in reference 7 . This type of circuit is at the heart of compander systems of the dbx type. It
could be used to provide gain control in audio control units, a single pot. varying the control voltage to a pair of such circuits in the two audio channels. The distortion and noise performance, though good, is not quite up to the highest stan-
dards sometimes demanded, maybe unnecessarily, in expensive control units, but some further refinement of i.c. versions of these gain-control circuits, including the reduction of residual evenfully balanced arrangements, may take place.
- In a fully digital audio system, gain control with perfect stereo tracking and any desired control law may be carried ou

[^4]

Digital delay

This circuit was designed to give a relatively long delay in a single-bit stream.
adaptive delta modulation system. The conventional method uses shift registers, but these are quite expensive and become less economical as the bit requirement ipcreases. A more attractive method is to use
the popular and inexpensive 21L02 1024the popular and inexpensive 21 L 02 1024-
bit r.a.m. which only requires one +5 V supply. The memory is sequentially addressed so that data is initially regad from, and new data subsequently written into each successive cell. Data read out in
this manner is identical to the input but

Power f.e.t, voltage

regulator
Power f.e.ts can be used as the control eloment The V.m.o.s. f.e.t. has a high value of g_{m}, a high impedance, and can pass ${ }^{a}{ }^{m}$ reasonably high drain current. Another advantage, shown in this example, is

parallel operation where the positive temproduce equal current sharing Operation is similar to a conventional regulator except that the f.e.ts require virtually no gate current. An error amplifier provides gate drive to both f.e.ts, which then con-
duct. Output voltage can be adjusted by the variable resistor. The voltage at the gate is about 11 V for a load current of 100 mA , and increases to approximately 16 V with a current of 1.8 A . A foldback current limit protects the regulator agains
overload by triggering a thyristor at about 2A to switch both f.e.ts off. The circuit has an output resistance of $60 \mathrm{~m} \Omega$ and provides +9 V with loads up to 1.8 A . Performance depends on the gain of the error amplifier, by replacing the transistor with a high op-amp. Larger currents can be provided by increasing the number of parallel f.e.ts, which must be mounted on heatsinks.
G. Loveday

Kent
delayed by 1024 address change periods. To cascade several memories, the write cycles must be progressively shorter for system:. Howe nated byer, this problem can be elimiand addresinecting the memories serially and addressing alternate devices by a 10 -
bit incremental address signal bit incremental address signal. A second
10 -bit address, which is incremented in quadrature to the first, is applied to the remaining memories. Symmetrical read/ write signals can now be used to transfer data from one memory to the next in the
appropriate manner due to the overlapping
address signals.
Numerous memories can be used as long as loading constraints are observed. Delayed data is extracted from the system by
clocking the $D_{\text {out of or }}$ of the last 21 L 02 through the remaining half of the 4013 flip-flop with either r./w. © if the number of memories is even, or r. $/ \bar{W}$.B) if it is odd. It is unnecessary for the address wiring for
each memory to be coherent because a unique address is only required for each cell. P. Gladdish Holbrook
Derbyshire

WOIDLD OTFAMETITUTD DADIO

DX records broken

What is thought to have been the longest distance two-way 144 MHz tropospheri contact ever to have been made in IARU Region 1 (Europe and Africa) took plac
on August 6. R. V. Thorn, G3CHN in outh Devon made contact with EA8XS in the Canary Islands, off the African coast, distance of over 2600 km . At the tim nticylonic weather conditions extended from south-west England southwards to to Florida, possibly a near miss for the firs ranslantic 144 MHz contact by means of ducting, though again suggesting tha me day this may be achieved. Sea ducting between California and the
Hawaiian Islands has, on very rare occasons, provided American amateurs with 144 and 432 MHz tropo contacts ove istances exceeding 4000 km .
Many British amateurs made their firs intensive spell of operation by C31RN. On the 10 GHz microwave amateur talian enthusiasts have bettered their revious world record distance of 633 km when, during July, 10 SNY $/ 7$ made aising the record to 757 km .

More museum stations

 Some 300 members of the 1000 -strons (RNARS), formed in the Radio Societ verseas, including 114 in Australia where a national branch was formed in Octobe 1979. As a result of the successful restoraoffice of HMS Belfast (GB2RN) in the ool of London, the Maritime Trust o Australia has accepted an offer by RNAR Australia to restore the W/T office of HMAS Castlemaine and to permit the station with the callsign VK3RAN. Most of the original W/T equipment has bee ocated and is now being restored KNARAN has regular schedules with RNARS stations in the UK including undertaken for HMAS Diamantinia which is to form a naval museum at Brisbane. Special calls held by RNARS in the UK include GB3RN at HMS Mercury (shor used (except on open days at Portsmouth Naval Dockyard); also GB2FAA at the Yeovil Naval Air Station ("Fleet Air Arm"). The London Science Museum has ype cryptographic machines of World War II vintage: a three-rotor German Enigma (Geheim Chiffriermachine) based on the work of Arthur Scherbius, and theBritish Type X Mark III machine
developed in the 1930s by Air Commodor Oswyn with the help of the RA orkshops. This typewriter-like machin could be used in the foes at up to $20 \mathrm{w} . \mathrm{p} . \mathrm{m}$. while "powered" by turning a handle with the other hand.

Amateur tv news

John Wood, G3YQC is to edit $C Q-T V$, the Club A recent listing of amateur t stations in South East England includes 24 stations in south London and alon oth sides of the Thames estuary. At rransmissions across the English Channel to France, Holland and Belgium are and the north-west has dropped in recent ears. In the current issue of $C Q-T V$ Grant Dixon, G8CGK describes his work with computer-based (Triton) slow scan the insertion of a reduced-size image into a quarter of the transmitted picture: fo xample it is possible to store a photograph of the operator in the computer memory and then, whenever required, to insert thi mission. An article by Tom O'Hara W6ORG, reproduced from the American atv journal $A 5$ describes an arrangement to terface a home computer (TRS-80) with television camera to enable two non-

On the bands

swansea Amateur Radio Society has won the RSGB's 1980 National Field Da trophy with the Bristol Trophy (singl sation entry) going to the Teesside Contes borough; 3.5 MHz Harlow; 7 MHz Mansfield; 14 MHz Southgate; 21 MHz Guernsey; and 28 MHz East Nottingham. The Gravesend Trophy was won b Guildford; the Scottish NFD trophy by Memorial trophy by Southgate.
Amateur licences in the USA at mid1980 had risen to 385,625 with the FCC issuing 12,583 new licences in the first hal of 1980, compared with 6119 during the examinations has. risen markedly although this has been ascribed by Ham Radio mor to memorization of the "question-and answer" guides that have recently become available rather than better understanding syllabus has recently been changed. The New Zealand amateur Fred Johnson, ZL2AMJ, in commenting upon the long-standing controversy on th
proficiency to obtain a licence for amateu ands below 50 MHz , has identified and isted 75 factors that have been pu forward in support of or against a comwhelming majority appear to be favourable to the c.w. mode which it is noted "shows no sign of a diminishing use from bservation on the bands". ZL2AMJ notes that the critics of the code requirements who have not experienced the use of the code on the h.f.bands and hence cannot be expected to understand the position tha he code has in the amateur radio world although "the reason for them not seeing, Among his many factors he notes that this is a skill which is not difficult to learn as sometimes claimed and that it takes bout 40 hours of effort to go from zero to Criticism of the code requirement can be raced back through amateur radio publications "to when phone operation rst commenced and there is no evidence ore today than in earlier days". xamination of the QSL cards passin hrough the New Zealand bureau "reveals a surprisingly high use of c.w." and the umber of ariches e.related topics The to be increasing
The potential health hazard posed by p.c.b.) as transformer-oil in 'dummy oads' etc. has recently attracted increased attention in amateur circles. However Tom Ruynon, VESUK points out that the degradable substance gets into the food hain rather than from skin contac imilarly it is recognised that the fumes merting polyurethane-coated wire contain the toxic substance di-isocyanate which can result in severe asthmatic tacks, particularly to people who hav become sensitised.

In brief

Despite the recent fire, it is expected that the 1981 RSGB National Amateur Radio Exhibition will be held in the temporar building which is being erected at Alexandra Palace, although dates have not yet
been announced ... Among 1000 search been announced Among 1000 search in West Sussex were 34 members of aynet, the radio amateurs' national emergency network. All ended happily hen the little girl was discovered alive from her family Approximately $250{ }^{\circ}$ of those who sat the UK Radio Amateurs xamination last May passed

Colour tv receiver design

4 - The switched-mode power supply

by R. Wilkinson, B.Sc.(Hons), M.I.E.E., Decca Radio \& Television Ltd

A switched-mode power supply operating at television line frequency was chosen for
the 70 series because of its inherently low power loss; its ease of obtaining any poltages required; and the possibility of making the chassis isolated from the mains. The alternative approach of a thyristor supply (used successfully for several
years in the 80 and 100 series chassis) does not readily lend itself to these require ments. Whilst it can be made to work efficiently, bulky iron-cored chokes are required and these are expensive, heavy and could produce mains frequency field
The 70 series s.m.p.s.u. is a flyback type of convertor (Fig. 16). Tr Tr_{1} switches the transformer primary across the rectified mains and energy builds up in it in the form of a magnetic field. When Tr
switches off, its collector voltage rises and so (by transformer action) does the secondary. D_{1} conducts and feeds all the energy stored in the transformer into the load. Hence the load is only supplied when the transistor is of
Stabilisation of the output voltage, against mains and load variations, is
achieved by taking a sample of voltage from a winding on the transformer and comparing it with a fixed reference to correct the drive waveform fed to the output device
Fig. 17 shows a block diagram of the s.m.p.s.u. circuit. The control unit contains an oscillator to ensure that the outpu stage remains switching whether it is
synchronised or not. There is an input of line drive from the sync processor. This, you may remember, has been synchro nised to the line sync pulses on the received video waveform. The other input is discriminator as a phase reference for the oscillator drive pulses which will eventually be used to provide base drive for the line output transistor. This phase refer ence is adjusta shift control.
Both these inputs cross the isolation bar rier and, consequently, must use double insulated components: the line drive inpu uses a small toroidal transformer and th isolated winding on one limb of the line output transformer.
During normal operation the control cir cuits are supplied from the s.m.p.s.u. t.f

fig. 16. Principle of the switched-mode power supply

some power must be supplied to the oscillator to start switching the output stage. The start-up circuit supplies this power
and then switches off once the voltage from the t.f. has built once the voltage drive the control circuits. Fig 18 shows a simplified version of the complete s.m.p.s.u. circuit and the start-up circuit operation can be seen from this. At switch
through R_{1}. Current flows through R_{2} and Tr_{1} to supply the control i.c. TDA258 and the driver stage Tr_{3} and Tr_{4} As the oscillator commences switching
the driver stage, and hence the stage, the voltage at C_{1} steadily builds until D_{1} turns on. Then Tr_{2} turns on pulling down the base of Tr_{1} which switches off. From then on the power to

upplied through D_{3}. Thus R_{2} does not need to be on all the time and anothe ource of power wastage is removed. The heart or the control circuitry is the the mark/space ratio of the output waveform and hence the output voltage. The error amplifier controls the pulse width modulator according to the difference between the adjustable sample of table reference voltage across D_{1}. A trip circuit senses the current in the outpu device and cuts off the output pulses if the current rises above a pre-determined vane releases the pulses again. If the exces ive load or fault still remains then the trip

Fig. 18. Simplified version of complete power supply circuit.
cuts off the output again. After this cycl has repeated about ten times the output
pulses are cut off "permanently" and the supply can only be restarted by switching off the mains, waiting a few seconds and witching on again (assuming the fault or overload has cleared or been corrected) The i.c. contains other protectich bir sample voltage goes high or if the contro .c. supply goes low or if the reference voltage at D_{1} goes open-circuit.
The driver stage has two transistors in à push-pull configuration. It will be noticed
sistor. This device is used in preference to an ordinary transistor because it removes

Reliability

As has been shown, the factors influencing the design of a television receiver are many and varied and often conflict with each ther. The solving of the problems thus series, a receiver which gives an excellent and reliable performance. One of the aims of the design team was to improve on the ready good reliability figures achieved by hat were monitored during the 24 hour soak test in the factory indicated that this was achieved with a good margin.

Sixty years ago

Until shortly before 1920 communication be ween submarines and shore or other vessels was only possible while transmitting or receiving
above the waves, due, of course, to the attenuaion of electromagnetic waves by water. An article called "The Submarine's Wireless" in the
November 27th, 1920 edition described newly found techniquess which enabled practical communication while the vessel was under water.
The techniques in question involved the deelopment of extremely sensitive receiving and amplifying apparatus, and more efficient aerial systems, to make possible the bridging of
distances of up to three miles while the vessel was submerged under nine feet of water. An
feat, but there is no mention of the frequencies
used, although long-waves are suggested as they used, although long-waves are suggested as they
were found to be able to penetrate the water better than short-waves. In the same issue, a small feature also apwas used by RAF officers as far back as the "mounted" 1918 . Two photos show the set "mounted" on an officer who stands, supported jecting from the top of his head. As wireless sets, especially of this type, were not all that the locals quite a start.
The need for ships to pass out of unlit har-
bours during wartime The need for ships to pass out of unit har-
bours during wartime was the necessity that
gave birth to the invention of the "radio cable" section also in this issue. This guidance cable, through which an alternating current wa passed, was hid in he harbour waterways. tion coils, probably one on either side of the deck, which intercepted che electromagnetic waves coming from the cable. By noting the relative strength of the waves reaching each cole
it was possible for the ship's navigator to deter it was possibe for the ship's navigator to deter
mine his position in relation to the cable. The US Navy laid one such cable which was sixtee miles in length, in the main w
proaching the port of New York.

90			ss world no
Identifier System, developed by Mason and Morton Ltd, consists basically of two units, a sender anda receiver, to which the cable group a receiver, to which the cable When switched on, the cables connected to points one and two on the sender are identified at the receiver and indicated by red and green l.e.ds respectively. Once identified, these two cables are simply connected to special points on the receiver to enable the two units to communicate with each other, after which the other cable points can be identified directly one by one. Open or short circuited cables are also shown up by the system. The basic model can accommodate up to 20 cables, and extensions are available enable a maximum of forty and Morton Group, M\&M House, Frogmore Rd, Hemel Hempstead, Herts HP3 9RW. WW 305			Software for micro
			A series of products called Comp
			t Software, introduced by Texas truments Ltd, support the
			TMS9900 family of 16 -bit
			microprocessors and TM990
			microcomputer modules. They complement TI's Microprocessor
			complement products to enable a reduc-
			in the number of software tements and allow designers to
			modular software capability to
			ir applications. Compone itware products rely on a sta
			dard software interface, analogous
			hardware interface in v.l.s.i. onents or microcomputer
			support and custom software s. Initial products in the se-
			SW340F
			croprocessor development
			PL system. The Realtime
Waveform synthesizer One of four new instruments recently introduced by Wavetech Electronics Ltd, is a programmable waveform synthesizer, for use either as a bench-top unit, or in conjunction with a.t.e. Model 178,as it is called, can be used as a function, signal or sweep generator.			Exeurines that perform the necessary rout
			executive functions for a real
			program. These functions include
	mamax		system initialization, concurrent process synchronization, inter-
			process communication, inter
			linkage, memory management and
			priority scheduling. The File Manager provides device-independent
Among the types of waveform in its range are sine, offset sine, square, triangle and ramp, at programmable output voltages of up to 20 V			file management capability from ${ }^{\text {a }}$
	ww		sembly language and/or microprocessor Pascal application programs,
			can interface at several dif-
p.p. into 50 ohms, with frequenciesof up to 50 MHz . The designtectios			ferent levels to the Realtime Execu-
			generality and software 'overhead'
techniques incorporated enable synthesized triggering, gating, frequency sweep, burst counts, and combinations of these modes tomake it a flexible instrument which			the designer wishes to include in his
			application. Texas Instruments
applications, and its dual-microprocessors enable input data to be accepted in any order or form for			WW 309
		W 307	
	optimal resolution and performance. Additional features include		
ater setings, a.m. and $\phi . m$. ,stored sherevariphase operation, frequency			
		WW 308	
variphase operation, frequency markers, and advantages such as 'learn mode', made possible through the use of a general pur-		WW 3	With a memory capacity of 16Kbit, this e.e.p.r.o.m., the HN 48016 by
			Hitachi Ltd, is claimed to be the
pose interface bus. D.c. offset, d.c. output and fixed t.t.1./t.t.t. output are also standard features. Wavetech Electronics Ltd, 115 Crock	using a computerized technique to enable good matching and opti-	from $0.1 \mu \mathrm{~F}$ to $\mathrm{i} 00 \mu \mathrm{~F}$, with working voltages of up to 50 V d.c.	first of its kind in the world. Dialogue Marketing Ltd say that it is
	mum noise performance. The unit,	values under 4.7 F . Working	now available through them for
	sed in stainless-steel and	gradually to a maximum of 4 V d.c.	sample deliveries, with large-order
hamwell Rd, Woodley, Reading, Berks RG5 3JP. WW 306	ed to work under rugged condi-	gradually to a maximum of 4 V d.c.	capacity expected by the end of the
	ns, will probably find its use in ch fields as commercial satellite	for $100 \mu \mathrm{~F}$. The unpackaged devices, which have epoxy encapsu-	year. Memory organization of the device is 2048 -word $\times 8$-bit, the
	such fields as commercial saterte	lated bodies, are available in eight	device is 2048 -word $\times 8$-bit, the same as for the 2716 e.p.r.o.m.
Double-balanced	Microwave Ltd, 112 South Street,	different sizes, ranging from 1.27 x	family, but its access time is only
	Braintree, Essex. WW 307	2.54 mm to $3.8 \times 7.2 \mathrm{~mm}$, and are compatible with modern hybrid as-	350 ns , and also the number of program/erase cycles possible is
			program/erase cycles possible is
Considering the 1 to 4.2 GHz bandwidth of this double-balanced	Midget capacitors	soldering, epoxy bonding and ther-	times. Compatibility with existing
	Suitability for assembly into thin	mal compression bonding. Stan-	e.p.r.o.ms, suitability for use with
mixer, the Summit model 1307, distributed by March Microwave Ltd, the performance is unusually	Suitability for assembly into thin Suitability for assembs ind and thick-film circuits, is one of the	dard operating temperature range is from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and capaci-	2 MHz microcomputers, and an ability to retain data for longer than
	features of a new range of solid-	tance tolerances of either 20% or	
high. Conversion lois and noisefigures are both less than 6 dB , and	electrolyte tantalum chip capaci-	10\% are obtainable (also 5% to	other features of this product. Dia-
	tors, type 194D Midget, which is	special order). Hy-Comp Ltd, 7	logue Marketing (Electronics) Ltd,
figures are both less than 6 dB , and 10 to r.f. isolation is greater than 40 dB . Dt:ring assembly, hot carrier	available through Hy-Comp Ltd	Shield Rd, Ashford Industrial Es-	Unit 11G, Rose Industrial Estat
	and manufactured by Sprague	tate, Ashford, Middx. TW15 1AV.	Bourne End, Bucks FL8 5A
	Electric. Capacitance values range	ww 308	WW 310

individual 250° movements for original equipment manufacturers another original idea from Bach-Simpson
Now you can have your own 250° meter movement to fit in your own case. Features include:
Sensitivities from $200 \mu \mathrm{amps}$
Top or bottom zero adjuster
Various pointer styles and lengths available Various pointer styles and lengths available
Supplied in specially designed polystyrene trays Customised to suit your specification For full technical information telephone, write or telex for full technical information

Bach-Simpson
Bach-Simpson (UK) Limited,
Trenant Estate, Wadebridge, Cornwall PL27 6HD Tel: (020881) 2031 Telex: 45451

In this month's issue
SERVICING THE DECCA 80/88/100 THE DECC
CHASSIS
SOLID-STATE VIDEO CAMERAS TUNING TROUBLES Common tuning problems and their cure
TV SOUND DEVELOPMENTS TV SOUND DEVELOPMENTS TELEUISIOI

Happy Memories

$4116.200 \mathrm{~ns} \quad £ 3.75 \quad 4116150$ ns $\quad £ 5.50$ 2114 200ns £3.45 2114 450ns £2.95 MEMOREX mini discs soft sectored - with FREE EX mini discs soft sectored-
library case $£ 19.95$ per ten.

WE'VE MOVED!!

All prices include VAT
30p postage on orders below $£$ p postage on orders below $£ 10$

Access \& Barclaycard All orders to: Dept. WW
HAPPY MEMORIES Gladestry
Kington
Kington
Herefordshire HR5 3NY
Tel. (054422) 618

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
Another superb design by synthesizer expert Tim Orr - published in Electronics Today International

COMPLETE KIT ONLY £299 +vat

POWERTRAN
MANY MORE KITS ON PAGE 95. MORE KITS AND ORDERING INFORMATION ON PAGE 93.

TRANSCENDENT 2000 smele baano swruhstrze

COMPLETE KIT
ONLY
$\mathbf{£ 1 6 8 . 5 0 + V A T !}$

THE ULTIMATE WATCHES

£19.95

JOIN THE KEYBOARD REVOLUTION!
With the amazing new CASIOTONE 201

ONLY $£ 245$
$\underset{\text { (r.r.p. } \mathrm{C285} \text {) }}{ }$

- IIIMWITIIT

L.E.D.s. 125 and 2 RED YELLOW or GREEN $1+.08$
$100+.069$
$1000+.058$
CARBON FILM RESISTORS E12 SERIES

T.I. LOW PROFILE I.C. SOCKETS

1N4148 Diodes
 cos

 $\begin{array}{cc}\text { o.25W } & \\ 100 \text { off type } & .70 \mathrm{p} \\ 500 \text { off one type } & .64 \mathrm{p} \\ 1000 \text { off one type } & .58 \mathrm{~F}\end{array}$ 100 off one type .90 p
500 off one type
1000 off one type $\begin{array}{ll}1+ & 100+ \\ .075 p \\ .068 p\end{array}$
\qquad

| |
| :--- | :--- | :--- | :--- |
| | We also stock transistors, diodes, TTL, CMOS, capacitors, instrum ent cases, switches, connectors etc. Free trade

Farrison Bros.
Electronic Distributors
22 Milton Road, Woastcliffoon-Soa
Tel. Southend-on-Sea (0702) 32338

MPA 200100 WATT (rms into 8 8) MIXER/AMPLIFIER

CHROMATHEQUE 5000
5 CHANNEL LIGHTING EFFECTS SYSTEM

£49.50 + vAt!

```
```

```
COMPLETE KIT
```

```
COMPLETE KIT
    ONLY
    ONLY
OMPLETE KIT ONLY
```

``` \(£ 49.50\) + VAT!
```

Chrouckicque 8000

\qquad

POWERTRAN
SYNTHESIZER KITS ON PAGE 93. MORE KITS AND ORDERING INFORMATION ON PAGE 91.

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER 885.00 + VAT

BLACK NOLS
MUSIC EFFECTS DEVICE - AS FEATURED
IN ELECTRONICS TODAY INTERNATIONAL

COMPLETE KIT ONLY £49.80
De Luxe version (dual delay line system) also available for $£ 59.80+\mathrm{VAT}$ (single delay line system)
Cabinet sizat $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (rear) $1.8^{\prime \prime}$ (front)
COMPLETE KIT ONLY $£ 49.90$ + VAT! MATCHES THE
CHROMATHEQUE 5000 PERFECTLY!

T20 + 2020 W STEREO AMPLIFIER $£ 33.10$ + VAT
 BUACK HOLE 1

TIDMPUS ${ }^{\text {Depp. Ww, Beaumont Centro, }}$
TDMIPUS $\begin{gathered}\text { 164-167 East Rd. } \\ \text { Cambridge } \mathrm{CB} 1 \text { 10B. Td: } 0223312866\end{gathered}$
${ }^{96}$

 Sole

MODEL UV141 EPROM ERASER

-

GP Industrial Electronics Limited

WIRELESS WORLD NOVEMBER 1980

ALL PRICES INCLUDE VAT @ 15\%
-) SWMET
OF WILMSLOW
The firm for Hi -Fi The firm for Hi i-
5 Swan Street, Wilmslow, Cheshire.

Send 50p for 1980 56-page Tel: $\mathbf{0 6 2 5} 529599$ FOR MAIL \mid Tel: $0625 \mathbf{5 2 6 2 1 3}$ (SWIFT OF | KITS, ETC. |
| :--- | :--- | :--- |

Lightning service on telephoned credit card orders! \square

Get Connected

Multiway connectors from 4 to 35 way with pre-tinned brass or gold hyfen contacts giving 5 and 13 amp rating per contact. The range of accessories includes cable clamps and dust covers. For full details of "by return" service contact:-
VEROSPFED 0703-618525
Stansted Road, Boyatt Wood, Eastleigh, Hampshire. SO5 4ZY
ww - 091 FOR FURTHER DETAILS

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available.
Many frequencies can be supplied from Many
stock.
Mike Taylor

INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g
\& - RIC $\begin{aligned} & \text { TEST } \\ & \text { INSTRUMENTS }\end{aligned}$
THE RANGE HAS INCREASED THE PRICES ARE DOWN

THE CS $183030 \mathrm{MHz}+$ Sweep Delay

 Brief spocification
Rectangular P PA tub Reatangualitiation P Aube $120 \times 96 \mathrm{~mm}$. P31 phosphor.
Bandwidtr DC $D-30 \mathrm{Mz}$

THE C51572 30 MHz for the VTR Lab.
fryou in Video, you need the CS1572

 of tideo facilitits is too great to explai
ask or orthe full story on the C $\$ 1572$.
Brirf S Specifitation
As for CS 1830 excep
As for CS1 1830 exen ept that the sweep delay feature is replaced by comprenensive vidide
sweep delay facilities which allow compilete anallysis of video wave forms and VTR
alignment.
CS 1572 only $£ 425+$ VAT, includes 2 probes

THE CS 157730 MHz at $2 \mathrm{mV}+$ Signal Delay The most popular scope in the range.
The CS1 1577 is, without doubt. our most popular oscilloscope and hundreds of satisfited
usersin ill secions of the electronics industry will confirm this. The CS 1577 combines
wide band wide bandwidth DC - -30 MHz performance with extremely wide trigger bandwidth
$(\mathrm{DC}-40 \mathrm{MHz}$) and 2 mV sensitivity over the full bandwidth.

 CS 1577 only $\mathbf{£ 1 0} \mathbf{~} \mathbf{+}$ VAT, inclúdes 2 probes.
Ther

THE CS 1575, unique dual trace 4 function Audio Scope

 Absolutely indispensabe to the professional audio engineer. the CS1575 is now in use
all lover the world. See it in action or send for complete detai is. CS1575 only £235 + VAT
AND TWO NEW ADDITIONS TO THE RANGE DL705 MULTIMETER

FC756 500 MHz COUNTER
DC to 1000 V
AC to 1000 V
AC to
Ω to $20 \mathrm{M} \Omega$
1 to 2 A
Semi Auto Ranging

$10 \mathrm{~Hz}-500 \mathrm{MHz}$
50 mV
Superb
instrument

£225 + VAT

- - WF

Chesterfield road, MATLOCK, DERBYS

 629-2430-TELEX 377482

Racai-vana add a new chapter to the story of test instrumentation. The 9084 Synthesized Signal Generator.
 One of the most advanced signal generators
 U.S.A.: Racal-Dana Instruments Inc., 18912 Von Karman

vailable anywhere in the world, the new 9084 brings you all the latest technology from Racal-
Dana's international award-winning design team.

With a frequency range from 10 kHz to 104 MHz (with doubler to 208 MHz), it spans th entire HF radio band, including the specialized LF and low-band VHF areas particularly useful for aviation and marine applications.

Its outstanding features include:

- exceptional spectral purity \bullet GPIB programmable high-resolution spin-wheel tuning • automatic display of operator error \bullet optional hand-held store for up to 96 frequency settings.

The 9084 is available now, so find out the whole story by returning the coupon today.

RACAL-DANA

High performance measurement and test instrumentation
BLCAL

Avenue, Irvine, California 927115.
Tel: (714) 833 -1234 Telex 678341
England: Racal-Dana Instruments Limited, Duke Street, Windsor Berkshire SL4 ISB.
France: Racal-Dana Instruments S.A., 91 route des Gardes, 92190 Meudon-Bellevue, Paris.
Germany: Racal-Dana Instruments (1) Limited Deutschland Hermannstrasse 29, D. 6078 Neu Isenburg

To: Racail-Dana Instruments Limited, Duke Street, Windsor, shire SL4 1SB, England.
\square Please send me your colour brochure on the 9084
\square Please arrange a demonstration of the 9084.
\square Please send me a copy of the Racal-Dana Concise Catalogue.
Position
Company
Address
Addre
1

TECHNOMATIC LTD.

接

Export Orders E Postrage or shipong at cost plus
Instant easy ordering, telephone your requiremen
and credit card number to us
Oswestry (0691) 2894
 Home Entertainment. Still the leading reference book on
Hi Fi it's now biggor and better than ever, with over 550 pages and new sections covering other types of home entertainment equipment: radios, electronic organs, col
 well as informative articles written by expe manufacturers, suppliers and dealers.
Hi Fi Year Book and Home Entertainm Hi Fi Year Book and Home Entertainment 1980 available at leadin
newsagents and bookshops from November 1st. Price $£ 3.75$. newsegenis and bookshops from
If in difficulty order direct from the

Accurate tape tension.

Tape Tension Meters for all audio and video tape recorders and player Europe by

The Experts に
CROW OF READING LIMITED
PO Box 36, Reading, RGI 2NB. Telephone: (0734) 595025
ww - 055 For further detalls

To: General Sales Manager. Room CP34
IPC Business Pres IPC Business Press Ltd.. Dorset House.
Stamford Street. Londo

Please send me...........copy/copies of hif Fi Year Book and Hom Entertainment 1980 @ $£ 4.25$ a copy inclusive. remittance enclosed.
Cheque/p.o. should.be made payable to IPC Business Press Ltd. Name.........
(please print)

Registered in England No. 677128
Registered Office: Dorset House. Stamford Street. London SE1 9 LU
ww
RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz transceiving application 1.8-30

RADIO SHACK LTD

For Communi
Trio testgear.
$=\square$
 drake \pm Sales $*$ service

RADIO SHACK LTD

188 bROADHURST GARDENS, LONDON NW6 3AY Giro Acceunt No. 588 7151. Tolephone: 01-624 1774
Cabies: Radio Shack, London, NWE. Telexx: 23718 wW - 048 FOR FURTHER DETAILS

WIRELESS WORLD NOVEMBER 1980
S-2020TA STEREO TUNER / AMPLIFIER KIT
NEW HIGH PERFORMANCE TUNER
A high-quality push-button
FM Varicap Stereo Tuner with pilot cancel decoder combined
with a 24 W r.m.s. per
Amplifier, using Bifet op Annel Stereo
Briof Spoce. Ampilifer Low field Toroidal transtoimei, Ma
and

NELSON-JONES Mk. 2 STEREO FM

 TUNER KITA very high porformanco tuner ritht dual
gate Moser
ar and
and

PRICE: $£ 74.95$ + vat

INTRUDER 1 Mk. 2 RADAR ALARM
With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved
performance. The kiti seven easier to build. The internal audible ealarm tuns of
 etc.
Complete kit
$\mathbf{5 5 2 . 5 0}$
plus VAT, or ready built and tested
$\mathbf{6 8 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer

	$\frac{\operatorname{mincc}}{6}$

Complete Kit PRICE: $£ 49.95$ + VAT (3 head model avilable)

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION

Australia: Gordon \& Gotch (Australasia) Ltd 380 Lorisdale Street. Melbourne 3000, Vic	
	anon: Levant Distridesi Street. Hox 118 na Bldg. Beirut
Canada: Davis Circulation Agency, 153 St. Clair Antario West, Toronto 195 Ontario	
dromou Stree	Malta; W. H. Smith Continental Lid, 18 S Scots Street, Valleta
Hovedvagtion, Dk. 1103 Kobenhavn	New Zealand: Gordon 8 102 Adelaide Road. Wellinotion 2
Finland: Rautakirja OY Koivuvaarankuja 2, 01640 Vantaa $64, ~ F$	
	Norway: A/S Narvesens Kioskompani, Bertrand Narvesens vei 2, Oslo 6
Germany: W, E. GmbH, 5 Koin 1 . Follerstrasse 2	Portugal: Livaria Apartado 37, Amadora
	South Africa: Central News Agency Ltd, P.O. Box 1033 , Johannesbur Oox 1033, Johannosburg
Holtand : Van Ditmar N.V., Amsterdam 1004	Spain: Comercial $j o d e$ Clento, 130-136 Barcelon
ndla : International Book louse, Indian Mercantile Mansion Ext, Madame ama Road, Bombay 1	Sweden: Wennegren Williams A B, Fack 25 Stockholm 30
gency Ltd, Citrus House	
	IPC Business Press, 205 East 42nd Street, New York, N.Y. 10017

The finest amplification kist from Crimson Elefrik

$\star \star \star \star \star$ LATEST DEVELOPMENTS $\star \star \star \star$

 oco
$\star \star \star$ BEST VALUE $\star \star \star \star$

ww - 028 FOR FURTHER DETAILS

USINESS REPLY SERVICE Licence No. 12045

WIRELESS WORLD,
PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD,

SOUTH CROYDON,
SURREY
CR2 9PS


```
\begin{tabular}{|c|c|c|}
\hline WW & Ww. & WW \\
\hline ww & ww. & ww \\
\hline ww & ww. & ww. \\
\hline ww & ww. & ww \\
\hline ww. & ww & ww \\
\hline & ww & ww \\
\hline & ww. & ww \\
\hline
\end{tabular}
```

W. C7 Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the
space provided. Name. .

Name of Company
Adorress.

Publ|
PUBLISHERS
USE ONLY
Position in Company
Nature of Company/Business
No. of employees at this establishmen

Wireless World:

Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

OVERSEA
AGENTS
Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kampass, S.p.a. Servizio Estero, Via Mantegna 6 . 20154 Milan - Telephone $\overline{3} 47051$ Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Telephone : (03) 585-0581

United States of America Ray Barnes, ${ }^{*}$ IPC Business Press 205 East 42nd Street ${ }_{4}$ New York, NY 10017 - Telephone. (212) 6895961 -Telex: 421710 Mr. Jack Farley Jnr., The farley Co., Suite 1548, 35 East Wacker Drive, Chicago, Illinois 60601 - Telephone: (312) 63074

Mr. Victor A Jauch,
Elmatex Internatio
P.O. Box 34607
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581 Telephone: (213)
Telex: $18-1059$
Teiex: $18-1059$.
Mr. Jack Mentel, The Farley Co., Suite 605, Mr. Jack Mentel, The Farley Co., Suite 60 ,
Ranna Building, Cleveland, Ohio 4415Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co., P.O. Box 2008, Miami Beach, Florida 33140 -Telephone : (305) 532730 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N. E., Atlanta, Georgia
30305 Telephone: (404) 237.7432 Mike Loughlin, IPC Business Press, 15055 Memorials, Ste 119, Houston, Texas 77079 -Telephone : (713) 7838673

Canada Mr. Colin H. MacCulloch International Advertising Consultants Lid 915 Carlton Tower, 2 Carton Street,
Toronto 2 - Telephone (416) 3642269

UK subscription rates
1 year: $£ 10.00$
Overseas 1 year: $£ 13.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value.

USA \& Canada subscription rates

 1 year: $\$ 33.80$Piease remittance value

IPC BUSINESS PRESS Ltd.

Is your name last on the Electrical Times circuit?

Isn't it time you had your own copy of Electrical Times

Every week Electrical Times gives you NEWS on: people, prices, contracts, financial deals, international events \& new products.

Regular features are included on contracting \& installation, repair \& maintenance, distribution plant \& operation, and motor applications and control.

Electrical Times also carries top quality job opportunities for people at all levels in the electrical industry in its appointments pages.

An annual subscription costs $£ 12.00$ - not much to pay to ENSURE that you're the first to be plugged in to the power of the Electrical Times circuit

Address
\qquad

VALVE				
VAIVES AND TRANSISTORS mañuracture, in leather or canvas				
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd., London W. 12			Tel. 01-743 0899 Open Monday to Friday 9 a.m.-5.30 p.m.	

From Newtronics
 THE NEW EXPLORER/85 SYSTEM EXPLORER/85
 PROFESSIONAL COMPUTER KIT
 An inexpensive
 8085, S100 Based
 Computer System designed
 for maximum flexibility
 Now available with $8^{\prime \prime}$ Floppies

The 8085 is 100% ompoatible with the 8080 but 50% taster. The 8355 ROM 2 K monior ssitem includes assente interace withore

 Compare these prices carefully and you'IIt ind you are actually getting more for your money.
4 K space not tonough? Then it's' JAWS' for you (see below) and yóu can go up to 64 K in 16 K steps. We'll let you have a 16 K EXPLORER/ 85 for only E 338 .

8' FLOPPY DISC

 SYSTEM

 \begin{tabular}{llll}
F.E.T.OUTPUT IOOW MONO POWER AMPLIFER MODULE \& $£ 27-50$ \& $£ 35-00$

\hline

X-ZAND DOPPLER RADAR ALARM MODULE - MARK II \& $£ 35-90$ \& $£ 44-00$

ONE AMP. P.S. MODUE (SPECIFY 5 OR 12 VOLTS) \& $£ 7-50$ \& $£ 10-00$

\hline
\end{tabular}

64K 'JAWS' S 100

 DYNAMIC RAM BOARD

Tawtronias TVM-10 MONITOR

$£ 99.50$

- Designed for monitoring computers, closed circuit TV and

Video Tape Recorders

- 10 "" black and whiters video monitor

10 MHz band width
High-quality metallic cabinet
Dimensions: $9^{\prime \prime} \times 9^{\prime \prime} \times 91 /{ }^{\prime \prime}$

WIRELESS WORLD NOVEMBER 1980

ROHDE \& SCHWARZ TV.Demodulator. AMF. $55-90 \mathrm{MHz}$ Selective UHF V/Meter. Bands $4 \& 5$. USVF UHF Sig. Gen type SDR $0.3-1 \mathrm{GHz} . £ 750$ UHF Signal Generator SCH. E175. POLYSKOPS SWOB I and II: 	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753	DC POWER SUPPLIES *AFT 1045998.12-14V.@ 5 Amps. $\varepsilon 25$. $£ 2$ p.p.) *We cin supply the above poweve supply at any Tred Vorage betwen $5 v$ and 3 BVat $54 . \varepsilon 25$. tively. Dimensions $9 x 4 \times 5$ inss. $\mathbf{E 1 0 . 0 0}++(\Sigma 1$ ${ }^{\text {D.p.p. }} \boldsymbol{A R A R E L L}$ Current limited. Dimensions
	RACAL RA17 Receivers $£ 400$. AIRMEC 314 A Voltmeter. 300 mV (FSD)- 300 V	
	LEVELL TG66A-1 Decade oscillator. DERRITRON 1 KW Power Amplifier with control equipm	All the above power supply units are 230 V . AC input and are stabilised and regulated and
U.H.F. SIGNAL GENERATORS TF $1066 \mathrm{~B} / 2400-555 \mathrm{MHz}$. Deviation to 300 KHz TF1060/2 $450-1250 \mathrm{MHz}$. F1058 $1.6-4000 \mathrm{MHz}$		
		MODULATION METERS AIRMEC 210 3-300MHz. AM/FM RACAL $4093-600 \mathrm{MHz}$. AM / FM
	VACUUM/COMPRESSOR PUMPS	
BECKMAN TURNS COUNTER DIALS Miniature type (22 mm diam.). Counting up to instructions. Only $£ 2.50$ each.		
	SOLARTRON LM 1420.2 . DVM. 6 ranges to 1 KV . MUIRHEAD type K-134-A Wave Analyser. Portable WAYNE KERR B521 Universal Bridge. HEWLETT PACKARD $608 C$ Signal generator. $10-480 \mathrm{MHz}$ WEINSHEL Power supply Modulator type MO3. BRUEL \& KJOER type 1504 Deviation Bridge BRUEL \& KJOER Vibration equipment 1018 BRUEL \& KJOER Frequency analyser 2105	
KAY ELEMETRICS SONA-GRAPH Sona-Graph model 7029A. 5-16000Hz Spectrum Analyser with type 6076 C Pug-in unit. For the spectrogrphic Analysis of transient sounds etc. Supplied in excellent condition with handbooks.		
		* BELL \& HOWELL MICROFICHE: VIIWERS ${ }^{*}$
ft. E14. Als Morgan Grundy 1 cu. ft. Et. 5 .20.WAY.JACK SOCKET STHIPS. type with two normally closed contacts. $£ 2.50$ each (+25 pp). Type 316 three pole plugs forabove -20 pea. (pp free).		DIGITAL MULTI-METERS DE FOREST ELECTRONICS TYPE MM 200 , 1A. Each in 4 ranges. Resistance 0-19.99 Aohms. ranges. LeD Display-1999 \qquad

ORION SCIENTIFIC PRODUCTS LTD.
10 Wardour St., London W1

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive
range of equipment for processing all types of picture tubes, range of equipment for processing all types of picture tubes,
colour and mono. Standard or ousto puil uits for estab-
iosher or new businesses. We export world-wide and have an lishour ond now businesses. We exportt world-wide and have an
lexcellent spares service backed by a strong technical team. Full training courses are individually failored to customers

For.full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD. Willis Road, Croydon, CRROXX
$01-6841422,01-6898741$ WW - 030 FOR FURTHER DETALLS

HOW'S THIS FOR FAMILY PLANNING?

WE'VE GOT AN ADDITION

 TO OUR FAMILY. WE WANT YOU TO MEET THE TX-80B DOT MATRIX PRINTER.It's a complete 80 -column dot matrix printer for use with personal computers. It prints a full 96 ASCII and graphic characters at 125 characters per second. Its 100 million character dot head mechanism achieves long operating life by employing a unique rubyjewelled support.
All for $£ 345$ one off (plus VAT) and ex-stock.
THERE'S A BIG FAMILY OF INTERFACES TOO.

Meet the Family
Phone K. Evans
ROXBURGH PRINTERS LTD.
22 Winchelsea Road
Rye, Sussex
Rye (079 73) 3777
One of the Roxburgh Group of Companies

WW083 - FOR FURTHER DETAILS

WILL TAKE PLACE
 29th-31st OCTOBER 1980 WEST CENTRE HOTEL, LILLIE ROAD, LONDON
 10 am to 6 pm
 (Closing 5 pm on the last day)

The response to the second exhibition for The response to the second exhibition for
professional and business people has been overwhelming, justifying the decision to take the whole hall at the West Centre Hotel.
An additional feature to this year's show will be a Workshop/Forum, where sponsoring company's will hold an open discussion on the latest related topics. Entry to this will be free.

This year's event is designed as it's title suggests, to interest not only those professionally involved with viewdata \& teletext, but also those businessmen whose companies are able to use viewdata or are already doing so.

The event has over 40 exhibitors including Sony, GEC, Information Services, The Post Office, Langton Information Services, CAP CPP,

Granada TV Rental, Fintel, Eastel, Cherry Electrical, Centronics, Link House Communication, Ansafone, STC, ITT, Bishopsgate Terminals, Oracle (London Weekend TV), and Barco Video Terminals (C.W. Cameron Ltd), showing a wide variety of exhibits uch as:
Editing equipment basic and advanced, monitors and user terminals, private viewdata systems and equipment, peripherals including printers, magnetic media recorders, light pens, graphic design aids and keyboards, accessories such as camera attachments, anti-glare sprays, screen hoods and masks, telephone timers, microcomputers for telesoftware and other umbrella" activities and facilities, software services for advanced editing, publications, semiconductor devices and many more.

ENTRANCE TO THE EXHIBITION IS FREE BY REGISTRATION

Advance tickets are available on demand from the organisers at:
Viewdata Tickets
IPC Exhibitions Ltd
40 Bowling Green Lane
London EC1R ONE

The AIRAMCO Mikro 1000

-The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combine State of Art technology with simplicity and durability to give a powerful small business system at a very competitive price
Driven by a 2.5 MHz or 4 MHz Z 80 processing unit constructed around Industry Standard S100 Bus, the Mikro 1000 is designed growing business or industry - memory is expandable from 32 K to 256 K , with up to 4 Megabytes of on-line disk storage.
The integral VDU has an 80 cols. $\times 24$ lines screen, and incorporates a green phosphor CRT, while the 117 key machine, and may be programmed for user functions such as word processing commands. from the main body of the

As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Control, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP)

For further information on either Mikro 1000 system, please contact
Unit A2, Longford Avenue, Kilwinning Ind. Est.
Kilwinning, Ayrshire, KA22 8NP.
Tel: $029457755 \quad$ Telex: 779808
el: $029457755 \quad$ Telex: 779808

122 WIRELESS WORLD NOVEMBER 198

ELAC HI-FI SPEAKER 10in. TWIN CONE

POTENTIOMETERS Carbon Track
 EMI $131 / 2 \times 8$ 8in. LOUDSPEARERS

RADIO COMPONENT SPECIALISTS

FAST ERECTING TELESCOPIC MASTS

For World-wide in the 1980s
Clark Masts are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in
supplying masts to meet exacting military and supplying masts to meet exacting military and can depend on.
Extended heights $4 \mathrm{~m}-30$ metres capable of Extended heights $4 \mathrm{~m}-30 \mathrm{Me}$ res capable of
lifting headload $1-\mathrm{Kg}-200-\mathrm{Kgs}$, sectional o telescopic air operated for field or vehicle mounting. Write or phone us for details today

Clark PT9 mast
in Citroen vehicle

Clark WT6 Mast
Clark Land-Rover venicle

OLARK

[^5]ww - 073 FOR FURTHER DETAILS Increctible priche!!

World-beating Oscilloscope Offers Electronic Brokers
$1-\begin{aligned} & \text { London, WC1X 9LN } \\ & \text { Tel: } 01-278 \text { 3461 - Telex } 298694\end{aligned}$ WW - 097 FOR FURTHER DETAILS

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM P\&P £1 - where P\&P not stated please use own discretion - excess refunded.

BAACCAVCARO NUSAS)

岛

프 61－65 King＇s Cross Road，London WC1X 9LN．Tel：01－278 3461．Telex： 298694

ミーニ 61－65 King＇s Cross Road，London WC1X 9LN．Tel：01－278 3461．Telex： 298694

Electronic Brokers No． 1 in Second User Minis \＆Peripherals

PDP11／04 Processor

DEC EQUIPMENT DD11－CK 4－slot backplane（11／34）	
H775－CB Battery Back－up	£525．00
A8E Positive 1／0（8E）	¢95．00
KD8E Databreak（8E）	145.00
KL8JA Asynchronous 1／0（8E）	£275．00
KL8E Asynchronous 1 ／ 0 （8E）	£250．00
KP8E Power Fail（8E）	£95．00
LA11－PD 180 cps matrix printer $£ 1250.00$	
M7850 Parity Controllers	£185．00
MF11L 8KW Core including 9 －slot system	
MM11LP 8KW Parity Core	£750．00
MM11YP 32KW Core Memory $\mathbf{£ 1 7 5 0 . 0 0}$	
MSV11C 16KW MOS Memory（LSI11）	
	£495．
S11JP 16KW MOS Memory $\mathbf{E 8 9 5 . 0 0}$	
PDP11／34 Processor， $10^{1 / 2^{\prime \prime}}$ Chassis， 128KW Mos，DL11W，KY11 B $\overline{\mathbf{\varepsilon}} \mathbf{6 9 5 0 . 0 0}$	
PDP11／40 Processor with 32 KW parity	
core，KT11D Memory Management， DL11 Interface 6 ft ．cabinet $£ 4950.00$	
PR11 High Speed reader and control $\mathbf{£ 9 2 5 . 0 0}^{\mathbf{4}}$	
REV11 Bootstrap（LSI11）	$£ 75.00$
RK05F Add－on disk drive ．．．£2250．00	
VT55－FB Graphics Terminal with integral hard copy £1350．00	
PD̄̈̈̈́ Series modules－Targe stocks of option modules，add－on core，CPU boards	

DEC Memory－Bargain offer

CENTRONICS 101 A

Iーナ＝61－65 King＇s Cross Road，London WC1X 9LN．Tel：01－278 3461．Telex： 298694

[^6]

LOW COST PRINTER OFFER

MISCELLANEOUS BALL MIRATEL＂9＂M Monitor with case incluading
space for keyboard．Integral power supplies space for keyboard．Integral power suplies
incluuded Requires separate horizontal and
and vertical video input
CLARE KEYBOARD SWiTCHES．
Special
STM． purchase of top quality Clare SF－type reed
switches．BRAND NEW SURPUUS $£ 25$ each switches．BRAND NEW SURPLUS £25p each
DATA GENERAL model 1210 CPU with 4 K core DATA GENERAL model 1. DIGiTRONIC P P 35 paper tape punches 35 cps．
Solenoid device with
EMI MON
MITOR $15^{\prime \prime}$ dia．tube in integral power

 GE TERMINET 1200 RO Printer， 80 columns，
tractor feed，upper／lower case ASCII， 20 mA Interface
HAZELTNE THERMAL PRINTER BO－column
30 HAZELTINE THERMAL
cps silent RO printer with parallel TTL Thut
In SHUGART SA400 Minifloppy disc drive－ SHUGART SA800 $8^{\prime \prime}$ Floppy disc drive－
BRAND NEW TALLY 1602 MATRIX PRINTER Parallel Input Upper／Lower case．Tractor feed，as new， TERMiPRINTER 7075 RO Impact Printer． TEXAS 725 Portable Terminal with acoustic

Less World november 198

ELECTRONICBROKERSLTD

 VDU PRICES S＇M／ATMTPRMED
Hazeltine H－1000

SCREEN SIIE－ $11^{\prime \prime}$ diagonal．
SCREEN CAPACITY -960 characters； 80 per line 12 lines．
CHARACTERS -5×7 Dot Matrix； 625 －line CHARACTERS -5×7 Dot Matixix 625 －ine
CHARARACTER SET -64 ASCII alpha．

 TRANSMISSION－Asynchronous．Switch－
selecobabe tor ony two standard rates up to

goo baud | 960 baud |
| :--- |
| OPRATING MODES－Full／Half Duplex． |

 （EAAR R－232
REFRESH RATC
R When ordering please specity your choice of Sch．slectable baud rates． $110 / 300$ baud Optional：A combination of of any 20,1200 baud
low the tol

Hazeltine H－2000

 Contan kevsic cluser pus editing a
TRANSMIISsion - Asch

Hazeltine MODULAR ONE
The Hazeltine Modular One terminal offers the full range of terminal oferrs the full range of terminal
pertormances－from simple teletypewriter compatibiity to tonhanced
edititng and poling capabilitie editing and polling capabilities． The Modular one is supplied in two
differernt versions．The BASIC MODEL provides the tololowing features：$\star 1,920$

 \star S1－kers numeri，chad \star Movable
keyboard \star Choice of 8 transmiss keyboard \star Choice of 8 rransmission
rates up to 9600 o 8 then rinteraces：EIA RS－23 2 and current loop
\star Cheoice \star Chioce of block or blinking underscore cursor \star Choice of white－on－black or
black－－on－white display representation．

Optional：

Lower Case
Printer Port（parallell）
Printer Printer Port（serial）
EIA Data EIA Data Cable
Remote Edit Rurrent Loop Interface Synchronous Interface
External Baud \＆Parity
Switch Also avaiable：EDIT MODEL
POLING MODEL

A MATTEROF LIFEOR DEATKH

RECHARGEABLE BATTERIES

trade enquiries welcome
Full range avaiable to replace 1.5 volt dry cells and 9 volt PP type
batteries, SAE for .list and prices. $£ 1.45$ for booklet, "Nickel dium Power," plus catalogue.

Write or call at:
SANDWEELL PLANT LTD.
SANVION Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764 See full range at TLC. 32 Craven street, Chäring Cross, London
WC2.

WW - 052 FOR FURTHER DETAIIS

When an accident occurs involving severe electric shock, people on the spot may be suffering from a kind of shock themselves. The realisation that one has literally only seconds to save a life can itself be momentarily paralysing. re-styled its Electrical Shock Chart. The new chart, prepared in consultation with St. John's Ambulance Brigade, highlights the main, points
in red, and explains and illustrates the actions to e taken so clearly that they can be grasped instantaneously even in a crisis. It also inc/udes vital instruction on what to do if the casualty does not respond to artificial respiratton - with a Action this second could save a life. Post this coupon NOW.

VIVID RED AND BLACK. PLASTIC,CARD OR PAPER. SIZE 19 in $\times 131 / 2$ in $(474 \mathrm{~mm} \times 346 \mathrm{~mm})$

TWIN PPM BOX

\qquad
MANS INTERCOM IMPROVEI

K
NEW PRODUCT MODULAR TERMINAL BLOCKS

and Iow resistance circuits.
AC $/ 0 \mathrm{CC}$ to $2000 \mathrm{~V}-13 \mathrm{Am}$

AC/DC to $2000 \mathrm{~V}-1 \mathbf{1 i t s}$ Amps.
Ind brackets and bodies - Gre

LOTHIAN ELECTRICAL MACHINES LTD.

WW - 057 FOR FURTHER DETAILS

ETCH RESIST TRANSFER KIT SIZE 1:1

FRONT AND REAR PANEL TRANSFER SIGNS

All rordoren dispenched promply. All poot paid
Shop and Trade enquiries welcome. Special Transters made to order
P.C.B. R. NRANSHOLS

The best jobs in electronics and communications appear in Electronics Weekly. Trouble is your plac appear in Electronics Weekly. Trouble is your pad office copy $2 n d$, 3 rd or 4 th hand, chances are any office copy 2nd, 3rd or 4th hand, chances are any good jobs have already gone. The solution's simple. For only 15 p a week you can receive not only the best of the latest jobs, but also everything that happens in the electronics industry: new technology, new projects, major policy changes, the battle for markets. The whole electronics business scene is covered week by week - and interviews with leading industrialists provid insights into the way top companies are Weekly ahead of everyone place a regular order Weekly ahead of everyone, place a regular order with your newsagent or complete and post the will always be new!

To: Marketing Department, Room 626A, Dorset House, London SE1 9LU Please send me Electronics Weekly for a year. I enclose cheque/p.o. for UK $£ 8.00$ (inclusive of pधrp).
$\$ 20.80$ payable to IPC Business Press Ltd.

Name...

 Electronics Weekly
| - - - - - - - - - - - - - - -

THE ‘APPLE’ COMPUTER KEYBOARD

- 52 key 7 -bit ASCII Coded

- Parallel output with Strobe.
Power Light on Contro
National MM 5740 Chin
- National MM574 Chip, TTL Output
Superbly made, size $12 \times 5.5 \times 1.5$ in.
Black
- Superbly made, size $12 \times 5.5 \times 1.5$
Black keys with hwite egends
Escape shitt return and rest
- Escape, shift, return and reset keys
Complete with Circuit and Data

Ideal for use with TANGERINE, TRITON, THSCAN, APPLE and
Ex-stock from Henry's.
Ex-stock from Henry's.
This is definitely the BEST BUY. Supplied BRAND NEW in manufacturer's original packing (ANTI-STATIC).
Just post remittance, total $£ 35.95$ (incl. VAT \& Post).

Ex Henryis

SOUTHERN ELECTRONICS
WESTCLIFA ARCADE, RAMSGATE, KENT
TEL. THANET 0843) 58888 .

> ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON
> OR BRIAN CHAPMAN 01-261 8353

SYSTEMS ENGINEERS - TELEVISION

Experienced engineers are needed to work on design and project management of Outside Broadcast vehicles and
television studios. This is an television studios. This is an opportunity for engineers to become involved in projects from their initial design
concept, through manufacturing to delivery and installation.
Our custom built systems require a high degree of customer contact at engineering level, from the initial design
stage to the necessary training of operational staff stage to the necessary training of operational staff on completion of the contract, both within the UK and
overseas. You shous.
You should have a knowledge of TV studio engineering gained from experience in this type of work or from
experience in the operational side of television.

DESIGN AND DEVELOPMENT ENGINEERS - VIDEO

An experienced engineer who will be involved in the design of studio products, including a new range of colour cameras, using the very latest analogue and digital techniques. You will have the opportunity to see your designs made in volume production, fulfilling the high technology requirements of the ' 80 s .
We are looking for engineers who are qualified to degree or HND level and who have at least four years' experience in the design of electronic equipment, with some knowledge of video engineering and microprocessor techniques.

DESIGN AND DEVELOPMENT ENGINEER - AUDIO

A senior audio design engineer responsible for the design of custom made studio talkback systems to
specifications agreed with customers, for use in television mobiles and studios. specifications agreed with customers, for use in television mobiles and studios.
You need to be professionally qualified, and have a background to enable you rapidly to take over the full
responsibilities of this product area.

TEST ENGINEERS

We require engineers at intermediate level to assist in the manufacture of our new range of products for the
Broadcast studio television market. Broadcast studio television market.
You need to have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on broadcast television, or similar sophisticated products, and be capable of faultfinding down to component level.
We are a young, successful Company, well known in international television circles, operating from our modern purpose-built factory in Andover. Salaries offered are very competitive, and supplemented by generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.
PLEASE WRITE GIVING FULL DETAILS OR PHONE JEAN SMITH AT THE ADDRESS BELOW FOR AN
APPLICATION FORM.

Appointments

Join us in the forefront of technology

Take your pick

HF-VHF-UHF-
Microwave Optics \& Acoustics A challenging and full career in Government Service. Minimum qualification - HNC Starting salary up to $£ 6,737$ (under review). Please apply for an application form to the Recruitment Officer (Dept. WW9) H.M. Government Communications Centre, Hanslope Park, Milton Keynes MǨ19 7BH.

R \& D Engineers

required to work on digital circuits for micro-processor based industrial and commercial
systems. systems.

The candidate should have a working knowledge of TTL and CMOS logic and have experience of programming at assembler language level for mion

Engineers should hold a degree / HNC or equivalent qualifications. Salary will be. commensurate with
qualifications, age and experience.

If you are seeking an enjoyable position involving giving your career to date or telephone

Dr. G. O. Towler
(New Product Development Manager) British Relay Electronics Ltd.
32 Biggin Way
Upper Norwood
London, SE19
Tel. 01-764 0931

ENGINEERING OPPORTUNITIES Telemotive uk Ltd is a Company in association with a
maior U.S.A. manutacturer with worrd leadership in the madio contito of industrial machines, systems and

Commissioning enaineer
We currently require an engineer with the ability to work
independentity, commissioning, servicing and testing

base (Hersham).
Tha position involves traveling witin the U.K. and will
take the engineer into a wide varitity of of industries. A. company car is provided.
Electronics technician
We also require a technician whose duties would
incluce assembly, wiring and test of completete
 Previous experience of wiring is essential, preferably to

Telemotive is a aood employer. We took only for above average
porfsonnol, and this is reflecited in the conditions of mployment
oftered.
Please apply in writing, giving details of previous experience and
training, to:-
telemotive uk Itd

TOP JOBS IN ELECTRONICS Posts in Computers, Medical, Comms, etc. ONC to Ph. D. Free senvice. Phone or write: BUREAUTECH, Phone or write AGY 46 SELVAGE LANE, LONDON, NW7. $01-906$ LONDON, NW7. $01-906$ 0251 .

MANAGEMENT

 EXECUTIVE SELECTIONtelephone
JUNIOR \& EXPERIENCED COMPUTER ENGINEERS
benefits. Engineers with 1-6 years compuny and reap the benefits. Engineers with $1-6$ years computer maintenance
experience are required in many UK regions. Salaries experience ar car Interested? many UK re
£7K. £all Howard Wynne or Peter Gorton today!

Suite 201/6 Aibany House MANAGEMENT
MANAGEMENT:
BXCCUTIVESLI
opportunity to take a
look at Kodak and find
Appointments SERVICE ENGINEERS Take a look at Kodak

$$
\begin{gathered}
\text { HCOULD } \\
\text { REVEAL } \\
\text { BENHEN } \\
51000 \\
58000 \mathrm{pa} \\
8600
\end{gathered}
$$

allowances
nd company
out about installing, maintaining bonus plus plenty of repairing an exciting range and attractive employee benefits equipment used in the photographic of We are looking for men or women industry, including microfilmers, aged 21 and over to join our teams of tomers' premises throughout the cus- around the U.K to meet the placed We are expecting a high standard needs of our customers. from rou yull training on our equip ledge of practical need a sound know- be provided and on completion of ledge of practical electronics coupled training a company vehicle is with mechanical skills, preferably provided where it is needed to cover
having had previous servicing experi- the territory ence. In return we can offer the Please write
rewards and promotion Ploase write to Mr. C. Long, prospects expected when you join a large international \longrightarrow A1t, Kodak Limited, P.O. ings in the range $£ 7000$ $€ 8,000$ p.a. (under review) including some overtime,
 A1t, Kodak Limited, P.O.
Box 66; Station Road, Hemel Hempstead, Herts.
HP1 1JU, giving details HP1 1JU, giving details
of education, experience
and personal of education, experience ors
and personal information.

RADIO MAINTENANCE

ENGINEER

Required (AGe 25 to 40)

Capable of maintaining communication networks in various overseas
projects. Networks consist of HF-SSB, VHF-FM and VHF-SSB com. munications systems consist of HF-SSB, VHF-FM and VHF-SSB com
we offer inding repeaters. As from January 1,1981 we ofter ins s.sstems including repeaters. As from January 1,1981 .
Sudan. Sudin.

CIBA-GEIGY LIMITED
Agro-Projects AG 8.13/Attn H. Wenk
4024, Basel, SWITZERLAND For further particulars ring: $\mathbf{0 1 0 / 4 1 6 1 / 3 7 7 1}$

Appointments
140

National Broadcasting School

BROADCAST ENGINEER

th

The job will involve teaching radio operations and maintenance, and will include maintenance of the School's studios The successful applicant will be responsible to the Chief Enginceers and will have had significant experience in roadcasting, preferably with a background in maintenance. Some experience of teaching and of digital technology would also be advantageous

Excellent staff benefits including 5 weeks' holiday a year. Salary negotiable
Please apply with CV and other relevant details to: Chief Engineer, National Broadcasting School, 14 Greek Street, London W.1.

TV BROADCAST ENGINEERS -PLYMOUTH

Westward TV seeks several additional experienced Electronic Broadcast Engineers for their Studios at Plymouth. One vacancy involves the operation and maintenance of Telecine
and VTR equipment, including quadruplex 1 " helical scan and and VTR equipment, including quadruplex 1 "helical scan and
high band Umatic equipment, together with Rank Cintel high band
telecines.
Additionally, two vacancies are anticipated in the Electronic appointment andid involve maintenance duties with sent the Master Transmission Control area. We offer attractive locality and conditions of service including five weeks annual holiday
(from next year), free life insurance and salaries of up to (rom next year), Hree life insurance and salarie
$£ 9,950$ (Senior Engineer), including supplements.
Telephone the Personnel Manager for further details on 075269311 or write to Westwa

PHILIP DRAKE ELECTRONICS LTD.

PROJECT ENGINEER

TEST ENGINEER (as PROJECT ENGINEER)

DESIGN ENGINEER

DRAUGHTSPERSON/TRACER (as PROJECT

ENGINEER]

SENIOR AUDIO TEST ENGINEER

Opportunity to join a London based company producing gh quality sound mixing consoles for live media, p
sional recording and broadcast applications.

The individual most suitable for this responsible and interesting situation would be aged $28+$ with
similar) qual ification and several years post-qualification experience in fault diagnosis with audio products
designed to a high-reliability specification,
Ability to formulate test procedures, to appraise quality
standards and coordinate an enthusiastic team of test. engineers and technicians is essential.
In return we offer excellent remuneration, good conditions and an opportunity to gain managerial experience in this
field.
Telephone Jim Cousins on 01-388 7060 or 01-387 7679 for application form and further information, or write to him giving resumé of career to date.

TIVRS

Radio Communications
Electronics Engineers and Software Designers
Mid-Sussex-S.W. London Salaries up to $£ 8,000$ To join our expanding R\&D Laboratories covering a wide range of R.F.
spectrum, from L.F. to V.H.F. Equipments include transmitters and spectrum, from L.F. to V.H.F. Equipments include transmitters and
recievers for marine- and land-based use, radio navaids and radio
monito monito Electronics Engineers should dave experience in rransmitter or receiver design, analogue or sigita circuit design, microprocessor applications
Sotware Designers should be experienced Program mers with an
nterest in control signal processing or navigational software Atreastiv control, signal
Attractive salaries
generous benefits.
Contact: David Bird, Redifon Telecommunications Limited,
Broomhill Road, Wandsworth, London, s.W.18. Phone:01-874 Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874
7281 (reverse charges).

Going Places?

Even if you are going places in your present job,you may like to consider a change...if you are not, you certainly will wish to consider a change to a new and interesting field in Telecommunications, Broadcast Transmitter Engineering
We have immediate vacancies for suitably qualified men and women to train in the operation and maintenance of broadcas transmitters and to serve in various parts of the country. Even if you have no previous experience in RF transmission work it may be worth your while to apply since full training will be given. Transmitter work is challenging and involves knowing about colour television techniques, stereo radio transmission, digital aerials and transmission lines as well as heavy powerequition, aerials and transmission lines as well as heavy power equipmen In the future opportunities may arise for work overseas or on
mobile maintenance teams.

The minimum qualification required for an Engineer appointment is an appropriate HNC/HND, a C \& G,FT.C (Telecommunications) or a T.E.C. Higher Certificate or Diploma in Electronics or Telecommunications. Applicants must have normal colour vision and hearing Starting salary is in the range $£ 5425$ to $£ 5945$ depending upon experience plus extra payment for shift working. For further information and an application form, write to:-The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA, or leave your address by telephone on 01-408 0052 at any time,
BBO
 PRODUUCTION. VACAN COES IN COMPUTERS, NC,
COMMS
MEDICAL, Vore free registration Fore free registration ring
$01-4647714$ exx. 502
24 HoURS
LOGEX

Appointments
WIRELESS WORLD NOVEMBER 1980

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design,
Production and Service Departments and we can of attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
It you are interested to hear more, please fill in the If you are interest
following detais:-

NORTHERN REGIONAL HEALTH AUTHORITY

ELECTRONICS TECHNICAL ASSISTANT

Electronics Technicians of high calibre are required for the
Regional Engineer's Department, which is based at WalkerRegional Engineer's Department, which is based at Waiker-
gate, Newcastle-upon-Tyne.
The appointment will be at Technical Assistant Grade I, on the The appointment will be at Technical Assistant Grade 1 , on the
salary scale $£ 5850$. $£ 6900$ (currently under review). salary scale $£ 5550-$ - 6900 (currently
These posts offer technologically interesting and varied work These posts offer working conditions, and well-equipped
with excellent
laboratories. They involve visits to hospitals throughout the Region, for which financial reimbursement is made.
Applicants must have had considerable and broad Applicants must have had considerable and broad experience with modern electronic equipment.
Minimum qualifications: Mnd Guilds Full Technological Certificate in Electronic En
and
gineering gineering, or equivalen
Application form and iob description available from the
Regional Personnel Officer, Northern Regional Health Authority, Benfield Road, Newcastle-upon-Tyne NE6 Closing date for applications: 27 th October, 1980

COMMUNICATIONS

Tracking Systems experience for Consulting Engineers.
'Hands-on' Telephone Systems Engineer.
Local and trunk swit EUROPE
Local and trunk switching systems designers.
Analog/Digital Multiplexed Modulation Systems deve
lopment lopment. U.K. and Offshore

Supervise installation of data networks.
Graduate/HND Design Engineer
We have a constant requirement for telephone telecom
munications, data communications, radar, radio an
munications, data communications, radar, radio and microwave engineers at all levels.
 STIRLING EXECUTIVE PERSONNEL International Recruitment Consuliants
128 Wigmore Street, LONDON WIH 9FE

ELEKTOR

UP-TO-DATE ELECTRONICS FOR LAB AND LEISURE

A TECHNICAL EDITOR

To be responsible for the edition of our English language
(monthly) magazine and books at our Head Office in Beek (L), the Netherlands. The successful applicant should have English as his / her native
tongue, and preferably a degree (or equivalent) in Electronics and considerable experience as an editor. A good working knowledge of either Dutch or German is

Please send detailed curriculum vitae to:
MRS. VAN DER HORST, ELEKTUUR B.V. MRS. VAN DER HORST, ELEKTUUR B.V.
POSTBUS 75,6190 AB BEEK (L), THE NETHERLANDS

Appointments

Electraosonic

PRODUCT DESIGN ENGINEER

lectrosonic Ltd., a world leader in the fields of audio visual lighting and control systems, require a Product Design
Engineer with professional qualifications, in one or more of the following disciplines:
Audio recording - reproduction, analogue, or digital contro
The applicant should have a minimum of two years' proven experience for this senior post. The ability to undertake all through to production, including initial design conception though to production, including initial design, prototype
development and A.T.E. programming is essential.
The right applicant will enjoy an excellent salary and working conditions at our recently-opened design offices in Swanley. Please write or telephone for an application form to:
Peter Smith-Design Manager-Unit Products Peter Smith—Des
Electronics Ltd.
Warwick House
Azalea Drive, Swanley, Ken
Telephone Swanley 60321

USE YOUR IMAGINATION
If you are the Design Engineer who joins us then you must do just that.
We have many projects on hand at present covering the whole spectrum of electronics and ideally you will have had a good theoretical
and practical background so that you know what makes circuits tick. and practical background so that you know what makes circuits tick.
But knowedge of new digital and analogue techniques and when to
use them will be equally use them will be equally important. We do not necessarily want
standard solutions to standard problems.
Ifdo If you can work by yourself and woulld. like the challenge of working for
a small growing company, write to us with brief career details. Mr. R. K. Furness, MINIM AUDIO LIMITED, Lent Rise Road,
Bumham, Slough SL1 Minim Audio
Make a note of our name!

Logic and Television ENGINEERS

We are urgenty seeking a Logic Engineer with pratical experience of fault finding on Micro-s and TV Monitors - also a TV

 Aggineer with experience and /or interest in Logics. Age hhould be over 25 ; ancompany in leisure field.
Apply in strict contiden

LONDON COIN
22-24 BROMELLS ROAD
LONDON SW4 OBQ

cichmumation

 microprocessor COMPUTING OFFICER\qquad

 and

明

RADIO TECHNICIANS

COMMUNICATIONS ENGINEERS

Plessey EAE install and maintain communications systems for the oil industry, at home and abroad.
Due to rapid and continuing expansion in our activities, we constantly require
Radio Technicians, with experience Radio Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter.
In the North Sea; earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Overseas
earnings could be up to $£ 20000$ - plus tax earnings could be up to $£ 20,000$ - plus tax concessions and generous home leave
The work is demanding, but rewarding, offering The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.
The company is based in
but where relocation is necessary, we will give offices in Aberdeen and Lerwick legal and temporary accommodation expenses.
Plessey EAE Limited, Dept WW, Offshore House, to: Personnel Manager, Gt. Yarmouth, Norfolk NR31 OJB Telephone 0493 58541 Southtown Road,

Appointments

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells,
Kent. TN4 8AS. Tel: 089239388

Please send me a TJB Appointments Registration form Name Address.

Television
 Engineer

We are based in Buckinghamshire and operate a broadcast quality
colour mobile unit and studio equipped with Link hand-held and stud cameras. Cintel
other facilities.
An experiencect television engineer is now required for operational and
maintenance work with our small team producing training
maintenance work with our small team .
for the Services at base and on location.
You should have worked on professional colo
training could be provided, where neecessary.
Good starting salary. Assisted travel allowance when applicable. Free
canteen. Four weeks a annual leave. Pleasant rural envifone

For further information
Personnel Manager
Personnel Manager
The S.enices Kinemacterporation
Chalfont Grove, Narcot

UNIVERSITY OF LIVERPOOL department of BIOCHEMISTRY
ELECTRONICS TECHNICIAN GRADE 3 or 4
For servicing and repairing scientific equipment. Applicants should have qualification in electrical/electronic engineering. Experience desirable but not essential. Salary Grade 3 $(£ 3918-£ 4590)$ or Grade 4 (£3918-£4590) or $(£ 4431-£ 5097$) according to qualifications and experience.
Application forms from the Registrar, The University, P.O. Box ref. RV/580/WW.

ONE IN A MILLION?

ONE IN A MILLION? Among the million or so leaving school or university this year there is a chance that perhaps two - is destined That person's first decision might well be to join QUAD in Huntingdon At school, he or having a listen or a fiddle with standard circuits and the variations. Later will have come an adolescent stage of great discoveries. Increase the rise time to eliminate TIM". 'Regulate the Following on from such childish things will have come an ability to the third row of the dress circle and betwpedance flux density and the rather gooey substance fed by spoon to small children. He or she will, about weight of the average apple 1 in 10^{6} ? Well, drop \qquad Mr. P. J. Walker THE ACOUSTICAL MANUFACTURING COMPANY LIMITED 30 St. Peters Road, Huntingdon, Cambs. PE18 7DB	
	ELECTRONICS
	$\begin{aligned} & \text { Opportunities exist for } \\ & \text { equipment in the Depart } \\ & \text { Measurement, Westminste } \end{aligned}$

unuefirivo TECHNICIAN (GRADE 3) end allied tiedst will acquirie skilit in this
 Electronic Development Engineers

 The Chiel Enhineer
Cardifif Broadciasting Cardifif Broadcasting

ELECTRONICS

ELECTRONICS Design/Development Tost//nspection Prototype Wiring All permanent positions in Greater London. Tel. 01-493 4856 for details F\& P APPOINTMENTS

 Mr. P. J. Walker LIMITED

(Low Capacity Radio Relay)

Have you R.F design ($400 \mathrm{MHz}-2 \mathrm{GHz}$) experience on system
dling baseband traffic up to 132 FDM channels or $2,048 \mathrm{Mbit}$?
dling baseband traffic up to 132 FDM channels or 2,048 Mbit? If so, then you could soon be part of our development team committed to the expanding world radio link business.

Pye Telecomm are ả major supplier of radio systems to the Public Utilities and offstore activities around the U.K. As a member of the Philips Group we have the world-wide penetration to provide Design Engineers with real career prospects and the opportunity to benefit from our wealth
of experience.

We enjoy talking to engineers interested in our field, and will be pleased to show you the professsional, social and sports facilities available
at our new complex in Cambridge. The succesful aplicants male or at our new complex in Cambridge. The succeesful applicants, male or
female, will be offered good salaries, with generous relocation expenses female, will be offered good salaries, with generous relocation expenses
whereapplicable. Living in Cambridge has its own benefits, not only is it an where applicable. Living in Cambridge has its own benefits, not only is it a
attractive city, but it offers excellent sporting, recreational and cultural amenities and a large selection of reasonably priced housing.

To find out more about how you could fit into our team please contact Liz Gray, Personnel Officer, Pye Telecommunications Limited, St. Andrews

Pye Telecom

Leeds

POLYTECHNIC
School of Mechanical \& Production Engineering

LECTURERIIN ANALOGUE /
DIGITAL
instrumentation

To teach on the New Technician Education Council Courses for
Mechanical and Production Engineers and to design and develop new Mechanical and Production Engineers and to design and develop new
laboratory equipment for use over a wide, range of courses. Interested persons wishing to discuss the post informaly

Salary £4,683-£8,055
A Union membership agreement in operation.
Details from:
The Services Officer, Leeds Polytechnic, Calverloy Street, Leeds
Closing date: 7th November, 1980. Please enclose s.a.e.

Appointments 14

Technicians in

 CommunicationsGCHQ We are the Government
Cheltent Cheltenham. Our interest is R \& D in all typ of modern radio communica
THE JOB All aspects of technician support to an unparalleled range of communications equipment, much
LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK ofportunities for service abroad

PAY Competitive rates, reviewed regularly. Relevant experience may count towards TRAINING W pay Prospects. TRAINING We encourage you to acquire new sk
QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or accept-

- HOW TO APPLY For full details on this and
information on our special scheme for those lacking practical experience, write now to Robby Robinson, Recruitment Office, GCHO, Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ.
or ring
0242-21491
ext 2269 .

Inner London Education Authority LEARNING MATERIALS SERVIC Television Centre, Thackery Road ondon SW8

HEAD OF SOUND (ST4)
The television centre produces a range of educational
programmes distributed in the form of 16 mm film, videocassettes and sound cassettes. The sound section of five members works with professional equipment (Neve, Studer, Sandor, ITC, etc.) to provide an audio componen of high standard.
The head of sound will lead the section and also to mix and process many of the programmes, He / she will be respons-
ble for training new staff, and with the Chief Engineer and others will also undertake responsibility for the equipment and for its purchase and maintenance.
pplicants should have suitable theoretical qualifications working knowledge of all sound operations associated with elevision and film is essential
Salary is within the scale $£ 8756.64$ to $£ 9593.64$
Further information and application forms available 365, I.L.E.A. The County Hall, London SE1 7 PB. elephone 01-633 7456.

APPLICATIONS ENGINEER

MICRO-SYSTEMS AND DATA ACQUISITION COMPONENTS c $£ 8,500+$ BONUS

A unique opportunity for a young engineer to move to the challenging world of commercial electran
"hands-on" aspect of design.

The assignment is to assist the sales team in solving "before and after technical problems. liaising with the
customers in the U.K. and Scandinavia.
Candidates must have at least HNC (BSC. preferred) with design product will be available. The position would be well suited to someone in their mid-wenties.

The company is a leader in the field of data acquisition components and analog orkets as ATE and process control, bring the need for a capable designer wanting to be associated with a successful company. Benefits include: 4 weeks' holiday; Free Medi
Assurance; Pension Scheme. Phone or write to:
a) Electrical/Electronic Engineering in Mechanical and Produc-

Electrical/Electronic Engineering in Mechat
b) Digital electronics. $\begin{aligned} & \text { bend Electronic Engineering. } \\ & \text { c) }\end{aligned}$

Relevant industrial experience with an appreciation and /or
experience of computer engineering to some branch of electrical experience of computer engineerin
Further details and form of application from: The Assistant Nottingham NG1 4BU. Forms to be returned as soon as possible.

TRENT POLYTECHNIC LECTURER GRADE II/ SENIOR LECTURER IN ELECTRICAL/ELECTRONIC ENGINEERING [£6012-£10539 (Bar) - £11295)
 PB WTATION ROAD
 TRENT POLI

HF/VHF Radio
Substantial benefits
Engineers to form the nucleus of on South Coast is seeking high calibre, commercially oriented, Graduate Electronic equipment.

CHIEF ENGINEER

A position that combines technical expertise with considerable managerial skills, in leading and directing a team of Design Engineers working with the most sophisticated techniques in radio communications applying advanced integrated circuit technology. Candidates must be honours graduates with a number of years post graduate

TECHNOLOGY SPECIALIST

Reporting to the Chief Engineer you should be an Electronics graduate with a minimum of six years experience of
circuit design with a wide ranging knowledge of modern semi-conductor and thick film ICs, preferably covering both RF (

SYSTEMS CO-ORDINATOR

Co-ordinating and preparing technical proposals, speciifcations and tender bids for new development programme graduates with at least 10 years relevant experience.

Salaries of up to $£ 10,500$ and beyond are offered plus an excellent benefits package including BUPA membershi and generous relocation assistance. Opportunitites for further advancement are very good indeed.

Harrison Cowley Executive Selection
35 Queen Square, Bristol BSI 4LU.Tel. 0272213151 (24 hr.answering service)

The Institut for Radio Astronomy in the Millimeter Wavelengths

RADIO FREQUENCY

ENGINEERS ${ }_{\text {NC } 12 / \mathrm{JC})}$

TECHNICIANS ${ }_{N C 13,(c)}$

to work at Grenoble (France) on intermediate fr 2 GHz) for fitter and correlator spectrometers.

Candidates with relev
September, 1980, to:
INSTITUT DE RADIO ASTRONOMIE MILLIMETRIQUE, (I.R.A.M.). Ad
CEDEX, Fmace.

LEEDS CITY COUNCIL

Leeds Polytechnic - School of Hef Education

SENIOR TECHNICIAN

sechnician qualification allowance). Responsible forthe care and operation of two psychology laboratories. Duties
will in
will fude the design, construction, repair and maintenance of electronic and laboratory equipment.
Ideally applicants might hold a City \& Guilds Technician Certificate in Electronics
 Application forms, quoting reference number, from the AdM
Officer, Leeds ollytechnic, Calverley Street, Leeds LSI 3 HE

Inner London Education Authority Learning Materials Service Television Centre, Thackery Road, London, SW8

TELEVISION CAMERA OPERATORS ST1/2

Applicants should have had some form of formal training together with
practical experience, though consideration will be given to those who tack the litere:
Salary is within the scale $£ 5,072$ to $£ 7,631$. Progression up the scal
to $£ 6,818$ is by annual increments subiect to satisfactory performance. to $£ 6,818$ is by annual increments subject to satisfactory performance.
Progression beyond that point is dependent on a positive assessment.
Further information and application forms available from the Educa-
tion Officar (EO/Estab tion officer (EO/Estab. 1C), Room 365 , 1.L.E.A.
Hall, London SE1 7 PB. Telephone $01-6337456$.

SOWIER TRANSFORMERS

ELECTRONIC TESTING \& FAULT DIAGNOSIS
 DIGSTEMS by D. C. Green.
Price: $£ 5.50$
SYST ELECTRONICS FACE: FAUL
DIAGNOSIS byI. R. Sinclair ELECTRONIC PESTCE: E3.50
H/B by K. Hemingway HANDBOOK Price: ELEC TRONICS CALCULATIONS
FOR ENGINERS \& TECH NCINS by M. Kautman. H/B OF MICROCIRCUIT byD. F. Stout. Price: $\varepsilon 19.20$
UNDERSTANDING
MICROPROSSORS Texas Inst. INTRODUCTION TO
MICROCOMPUTER PROGRAMMING by P. C. Sar derson. THE POMPLETE MICR: $\mathfrak{E 4 . 5 0}$ COMPUTER SYSTEMS H/B by E. L. Safford. Price: $\mathbf{E 8 . 2 5}$
TOWERS' INTERNATIO NAL TRANSISTOR SELEC
TOR by T. D. Towers, 1980 . TOR by T. D. Towers, 1980.

THE MODERN BOOK CO. ${ }_{8}{ }^{6}$ Technical Books 19-21 PRAED STREET LONDON W2 1NP Phone 402.9176
Closed Sat. 1 p.m.

BUILDING RAMS?

TO MANUFACTURERS, WHOLESALERS \&
 RIILK BUYERS ONLY

RESIIT.
CAPACITORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Wat
CAPACITORS. SARWVUND. Silver mica, Polystyrene, Polyester, Disc Ceramics,
Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Typess,
Axial, Radial, etc. Axial, Radial, etc.
Transtormers. chokes, hopts, tuners, speakers, cables, screened wires
connecting wires
screws, nuts, transistors, ICs, Diodes, etc
 All at Knockout prices. Come and pay us a visit. Telephon
4450749
21 Lodge Lane, N. Finchley, London, W.12. 5 mins. from Tally Ho Corner'
SURPLUS - BRAND NEW
PRESSURE TRANSDUCERS

For auick sale: fes PER SET @ 65 Off: $£ 1$

\section*{$\substack { \text { Ply } \\ \begin{subarray}{c}{80 \\ \text { er } \\ \text { EW }{ \text { Ply } \\ \begin{subarray} { c } { 8 0 \\ \text { er } \\ \text { EW } } } \\{\hline} \end{subarray}$ | W |
| :---: |
| $\substack{\text { R } \\ R}$ |}

J

縕。

@100FF

Classified

CIRCOLEC
THE COMPLETE ELECTRONIC MANUFACTURING SERVICE Let us realise all or any part of your project from prototypes to
production, from artwork design and component ourcing, trough
assembly and test to final quality assurance, packing and delivery. We also provide a test, repair and modification service to suit your
individual requirement. individual requirement.
For compeetitive prices and fast turnaround contact

CIRCOLEC, 1 Franciscan Road, Tooting, S.W. 17 Telephone: 01-767 1233

ELECTRONIC DESIGN SERUICES
MICROPROCESSOR HARDWARE And

$$
\begin{aligned}
& \text { yo } \begin{array}{c}
\text { yo } \\
\text { re } \\
\text { re }
\end{array} .
\end{aligned}
$$

PRINTED CIRCuIT BOARDS. Single/
doubte sided from cirruit dianramm

REPETIIION SHEET MEEALWORK

9月4 TRA1 FAST PCB RHYTOTOIA PROTOTYPES

mism

WANTED!

allypes iscrap and

REDUNDANT | REDUNDANT |
| :---: |
| ELECTRONIC | ELECTRONIC materials

transistors R PRIIT TED cicculi boands TO COMPLETE
COMPUTERS the commerial
 Refininc coition
 Caide comsiet ET
Pct oEsions at compativiv hourly
 ,

ARTICLLES WANTED
WANTED

зs marapois

WANTED

ANGLIAN INDUSTRIAL
AUCTIONS
We sell by auction, all radio and
electronic components and electronic components and
equipment. Why not let us sell
your surpus and end of your surplus and end of produc-
tion materials. All entries must be
received at least 21 days prio received at least 21 days prior to
sale. For entry forms or
next auction contac
B. BAMBER ELECTRONICS
5 STATION ROAD 5 STATION ROAD

Semem

 LITTLEPORT
CAMBS.CB6
TOE CAMBS.CB6 10E
TEL: $(0353) 860185$

DEAD OR ALIVE
SPOT CASH
paid for all forms of electronics eq
ment and components.
E.

WIRELESS WORLD NOVEMBER 1980

Classified

BUSINESS FOR SALE SMALL EAST LONDON BUSIIESSS,

I.H.S. SYSTEMS

 reguirementis. , or send and full deatais your for
prompt quotation

TEL. 01-253 4562

	McDeane Electricals 19 b ,

NeneCollege Northampton

MICROPROCESSOR
TECHNOLOGY
A range of one-day and three-day
courses covering both hardware Acurses covering both
and sottrare aspects.
Full details on apelication Full details on application:
Microprocessor Course Tuto School of Technology
NENE COLLEGE NENE COLLEGE
St. George's Avenue
NORTHAMPTON NORTHAMPTO
NN2 6JB

FOR
CLASSIFIED
ADVERTISING
RING
EDDIE
FARRELL
ON
$01-2618508$

CLASSIFIED

AND WHOLESALERS
BADIO AND TV
Radield
BROADFIELDS \&
MAYCO DISPOSALS.
MAYCO DISPOSALS.

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI GLU

- Rate $£ 2$ PER LINE. Average six words per
line. Minimum THREE lines.
- Name and address to be included in charge
- Box No. Allow two words plus $£ 1$.
- Cheques etc., payable to 'Wireless World"
and cross "\& Co."

PLEASE WRITE IN BLOCK Letters. CLASSIFICATION
NUMBER OF INSERTIONS

INDEX TO ADVERTISERS NOVEMBER
Appointments Vacant Advertisements appear on pages 136-151

PAGE	page	AGE
	Faircrest Eng 119	Pascal Electronics
A.E.L. Crystals 110	Farnell Instruments Ltd Cove	P. P.R.A. P P.Lt.
Ambit Internati	$\xrightarrow{\text { Feedback }}$ Field	Powertran Electronics $91,93,95$
${ }_{21}$	Forgestone 33	Practical ${ }^{\text {W }}$
n Electronic	Fylde Electron Lab	Precisin Petite Ltd. ${ }^{24}$
Audio lectronics 10,16	G.P. Industrial Elec. Ltd. ${ }_{16}^{96}$	uantum Electron
$\xrightarrow{\text { Audix }}$ An	GMT Electronics	
Aus	Guide to Broadcasing stations	
	Hameg	Radio Shack
Bach-Simpson . E.t..................... ${ }^{121}$	Hapy Memories (Landon Lta	Ralfe, P. F.
Barrie Electronics Ltd 11	Harris Lectronics	Rank Radi
Beyer Dynamics	Hart Electronics 105	R.C.S. Electro
BIB Hi-Fi	Henry's Radio	Roxburgh
Bi-Pak	Hi-Fi Y/Book	RST Vaves
eadboard 80 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }_{19}^{23}$	1.LP. Electronics Ltd 100, 101	Safgan Electronics ${ }^{133}$
Brewster, 8 R R R British National Radio 78	${ }_{\text {1LP }}^{\text {ITransformers Ltd }}$ I......................... ${ }^{30}$	Sandwell Plant Lta
${ }_{\text {Bull, }}^{\text {B }}$. 127	Interex	Service Trading 109
	Interface Quartz Devices	Shure Electronic
bridge L	Keithley Insts. 13, 19	Sinclair Radion
Caracal Eng ${ }_{4}^{23}$	KGM Electronic	
Carston Electronics Ltd . .1.	Kirkham Amplifier	Special Products Ltd.
Charonics $_{\text {Chitmead Lit }}$ -	Lamina	umech En
Circuit Services	rex	Strut Electrical \& MSH
ClarkMasts Ltd ${ }^{125}$	Lascar Electronic	rey Electronics Lt
Codespeed Elec ${ }^{123}$	Lothian Electric Machines ${ }_{99}^{133}$	Swanley Electronics Lt
Colomor …1....................... 1_{31}^{116}		Technomat
		Television
	Marshall, A. \& Sons (Londo	Tempus
Crow of Reading	Martin Ass	
C.T. Electronics.		Valradio Ltd. 14
	Mighty Micro …...................... ${ }_{13}^{27}$	
ox (GB)		VHS Committee
Display Electronics	Monolith Electronics C	
oram E	Multicore Solders Ltd	data
	Mura Electronic	e Microsystems Ltd. 7
Edicron .T........................... ${ }_{14}^{26}$		West Hyde Developments Ltd 34, 78
Electrical Times		Wilmslow Audio
Electronic Prokers Ltd .. $123,125,128,129,130,1131$	OMB Electronics ${ }_{18}^{23}$	Wilmslow Audio 97
Electron-Tech Comps Ltd	Orion Scientific Equipment Litd. 20	Zaerix
OVERSEAS ADVERTISEMENT AGENTS: France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat. F-9100, Boulogne, Paris.	 	Mr Jack Mentel. The Farley Co., Suite 650, hannä' Building, Atlanta, Georgia 30305. Telephoné: (404) 2377432. Houston, Texas 77079 - Telephone (713) 7838673.
	United States of America: Ray Barnes, IPC Business Press 205 East 42nd Street, New York. (212) 6895961 - Telex: 421710. (212) 6895961	
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosiget		
		Canada: Mr Colin H. Macculloch. Mmernational Adveritising
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero Telephone 347051 - Telex: 37342 Kompass.	Mr Vicior A. Jauch, Elmatex International, P.O. Box 34607 ,	Consultants Ltd., 915 Cariton Tow 2 - Telephone: $(416) 3642269$. *Also subscription agents.

Opens Tuesday 16th September, 1980 Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)
the catalogue to
Outside the U.K.
lenclose $\mathrm{E1} 16$. outside
1
enclose
51.16

Name
Address -
 Utilising the superb JVC deck ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a
high quality specification. We've got everything you need (except cabinet)
cluding full instruction leaflet cluding full instruction leaflet
for only $£ 39.95$.
Order as XY36P (Cassette Order as XYY6P (Cassette
Recorder Kit)

Post this coupan now for your copy of our 1979-80 Catalogue price 70 p Post this coupa a copy of your 280 page eatalogue. I enclose 7 .
Please send mea
plius 46 pYp). It lam not completels satisfied I may return the cataloge to you and have my monery refunded. II youn live
the send 1.35 or ten International Reply Coupons.

Recorder Kit)

Fight the space invaders, be a polaris captain or a spaceship
commander. Full colour action on your own TV set and over Basic console with Combat cartridge (ACOOA) $£ 99.50+£ 2.50$ carriag

Catalogue now available in all branches of WHSMITH 什, Price $£ 1.00$

Picture the ulimate in precision soldering.

When a solder medium for the microprocessor-based circuitry of the new Nikon EM camera was needed, a Multicore Oxide-Free Solder Cream was chosen.

Multicore, the world's leading authority on solder and soldering, has developed its own unique method of producing solder powders so that they are practically oxidefree. This means that the resultant solder cream will melt and flow as cleanly and as

A typical ordinary cream revealing poor particle shape and dross.

Multicore Oxide-FreeSolder Cream displaying clean, uniform globules.
quickly as rosin-cored solder wire. Merely a faint residue of fluxis left and any risk of solder globules being formed is minimised or even eliminated altogether.

Where the Multicore Oxide-Free Solder Cream differs is in the physical characteristics of its particles. Ordinary creams contain atomised solder powder, with each particle covered with a layer of oxide. This has to be removed by the flux after heating but non-corrosive, rosin-based fluxes cannot do this effectively given the nature of the solder technique used. The particles in Multicore Oxide-Free Solder Cream, as the electron-microscope enlargement shown illustrates, are much cleaner and more uniform. The result: cleaner, quicker soldering.

Available in a wide range of alloys and flux combinations, with particle size, flux content and viscosity equally variable, there can be a Multicore Oxide-Free Solder Cream tailor-made to suit your requirements.

If, like Nikon, you need a solder medium that can be applied with a high degree of accuracy, either by syringe or silk screening, will give you a thoroughly reliable joint, and will fully comply with health and safety regulations", you need to talk to Multicore about Oxide-Free Solder Creams.

To find out more, use the reader reply service, cut the coupon or contact us direct.

Multicore Rosin based Solder Creams are safe to use provided certain precuutions are observed. Details of these are available on request. Multicore Solders LLd is is Registered Supplie or Soider Creams on the U.K. Defernce Contratorts List and are typeapproved by the Ministry y I Defercecto DTD. 599 A. Multicore Rosin:based Solder Creams are approved on the Qualified Products Sist QQ.-5.S7.E of the US Defense Supply Agency.

The biggest name in solder worldwide

I would like more information on Multicore Oxide-Free Solder Creams \square
I would like you to contact me to arrange for a technical representative to call \square

Name
Position
Company
Address

Telephone
Telex
WW/1/SC

[^0]: WW - 020 FOR FURTHER DETAILS

[^1]: ww - 053 FOR FURTHER DETAILS

[^2]: Patas emond

[^3]: References
 Small, R.H. "Closed Box Loudspeaker Systems", part 1 and part 2, F. Audio Eng.
 Soc 20 No. 10 and 21 No. 1, 1972 \& 1973.

[^4]: References
 5. Shorter, D. E. L. and Beadle, D. G.," Equipment for Acoustic Measurements", 326-331 (September 1951).
 6. Harwood, H. D. and Shorter, D. E. L., "Stereophony: the effect of cross-talk between left and right channels", BBC Eng. Mono. No.
 52 ((arch 1964). 52 (March 1964
 7. Curtis, D. R., "A Monolithic VoltageControlled Amplifier Employing Log-Antilog
 Techniques", f.A.E.S., Vol. 24, No. 2, pp93102 (March 1976). 8. McKenzie, A. A., "Philips and the MIC/
 DIN pioblem", Hi-Fi News, Vol. 24, No. 9, 65 (September 1979).

[^5]: WW - 088 FOR FURTHER DETAILS

[^6]: WW－094 FOR FURTHER DETAILS

